Joorpukur JB school

Tue, 10 Feb, 2026 at 01:30 pm UTC+05:30

Bishramganj, Agartala, Tripura, India | Agartala

litan saha vlog
Publisher/Hostlitan saha vlog
Joorpukur JB school īŋŊāĻŦā§€āϜāĻ—āĻžāĻŖāĻŋāϤāĻŋāĻ• āϏ⧂āĻ¤ā§āϰāĻžāĻŦāϞ⧀īŋŊ
1.īŋŊ (a+b)²= a²+2ab+b²
2.īŋŊ (a+b)²= (a-b)²+4ab
3.īŋŊ (a-b)²= a²-2ab+b²
4.īŋŊ (a-b)²= (a+b)²-4ab
5.īŋŊ a² + b²= (a+b)²-2ab.
6.īŋŊ a² + b²= (a-b)²+2ab.
7.īŋŊ a²-b²= (a +b)(a -b)
8.īŋŊ 2(a²+b²)= (a+b)²+(a-b)²
9.īŋŊ 4ab = (a+b)²-(a-b)²
10.īŋŊ ab = {(a+b)/2}²-{(a-b)/2}²
11.īŋŊ (a+b+c)² = a²+b²+c²+2(ab+bc+ca)
12.īŋŊ (a+b)Âŗ = aÂŗ+3a²b+3ab²+bÂŗ
13.īŋŊ (a+b)Âŗ = aÂŗ+bÂŗ+3ab(a+b)
14.īŋŊ a-b)Âŗ= aÂŗ-3a²b+3ab²-bÂŗ
15.īŋŊ (a-b)Âŗ= aÂŗ-bÂŗ-3ab(a-b)
16.īŋŊ aÂŗ+bÂŗ= (a+b) (a²-ab+b²)
17.īŋŊ aÂŗ+bÂŗ= (a+b)Âŗ-3ab(a+b)
18.īŋŊ aÂŗ-bÂŗ = (a-b) (a²+ab+b²)
19.īŋŊ aÂŗ-bÂŗ = (a-b)Âŗ+3ab(a-b)
20. (a² + b² + c²) = (a + b + c)² – 2(ab + bc + ca)
21.īŋŊ 2 (ab + bc + ca) = (a + b + c)² – (a² + b² + c²)
22.īŋŊ (a + b + c)Âŗ = aÂŗ + bÂŗ + cÂŗ + 3 (a + b) (b + c) (c + a)
23.īŋŊ aÂŗ + bÂŗ + cÂŗ – 3abc =(a+b+c)(a² + b²+ c²–ab–bc– ca)
24.īŋŊ a3 + b3 + c3 – 3abc =ÂŊ (a+b+c) { (a–b)²+(b–c)²+(c–a)²}
25.īŋŊ(x + a) (x + b) = x² + (a + b) x + ab
26.īŋŊ (x + a) (x – b) = x² + (a – b) x – ab
27.īŋŊ (x – a) (x + b) = x² + (b – a) x – ab
28.īŋŊ (x – a) (x – b) = x² – (a + b) x + ab
29.īŋŊ (x+p) (x+q) (x+r) = xÂŗ + (p+q+r) x² + (pq+qr+rp) x +pqr
30.īŋŊ bc (b-c) + ca (c- a) + ab (a - b) = - (b - c) (c- a) (a - b)
31.īŋŊ a² (b- c) + b² (c- a) + c² (a - b) = -(b-c) (c-a) (a - b)
32.īŋŊ a (b² - c²) + b (c² - a²) + c (a² - b²) = (b - c) (c- a) (a - b)
33.īŋŊ aÂŗ (b - c) + bÂŗ (c-a) +cÂŗ (a -b) =- (b-c) (c-a) (a - b)(a + b + c)
34.īŋŊ b²-c² (b²-c²) + c²a²(c²-a²)+a²b²(a²-b²)=-(b-c) (c-a) (a-b) (b+c) (c+a) (a+b)
35.īŋŊ (ab + bc+ca) (a+b+c) - abc = (a + b)(b + c) (c+a)
36.īŋŊ (b + c)(c + a)(a + b) + abc = (a + b +c) (ab + bc + ca)
_____________________________________________
īŋŊāφāϝāĻŧāϤāĻ•ā§āώ⧇āĻ¤ā§āϰīŋŊ
1.āφāϝāĻŧāϤāĻ•ā§āώ⧇āĻ¤ā§āϰ⧇āϰ āĻ•ā§āώ⧇āĻ¤ā§āϰāĻĢāϞ = (āĻĻ⧈āĻ°ā§āĻ˜ā§āϝ × āĻĒā§āϰāĻ¸ā§āĻĨ) āĻŦāĻ°ā§āĻ— āĻāĻ•āĻ•
2.āφāϝāĻŧāϤāĻ•ā§āώ⧇āĻ¤ā§āϰ⧇āϰ āĻĒāϰāĻŋāϏ⧀āĻŽāĻž = 2 (āĻĻ⧈āĻ°ā§āĻ˜ā§āϝ+āĻĒā§āϰāĻ¸ā§āĻĨ)āĻāĻ•āĻ•
3.āφāϝāĻŧāϤāĻ•ā§āώ⧇āĻ¤ā§āϰ⧇āϰ āĻ•āĻ°ā§āĻŖ = √(āĻĻ⧈āĻ°ā§āĻ˜ā§āĻ¯Â˛+āĻĒā§āϰāĻ¸ā§āĻĨ²)āĻāĻ•āĻ•
4.āφāϝāĻŧāϤāĻ•ā§āώ⧇āĻ¤ā§āϰ⧇āϰ āĻĻ⧈āĻ°ā§āĻ˜ā§āϝ= āĻ•ā§āώ⧇āĻ¤ā§āϰāĻĢāĻ˛ÃˇāĻĒā§āϰāĻ¸ā§āϤ āĻāĻ•āĻ•
5.āφāϝāĻŧāϤāĻ•ā§āώ⧇āĻ¤ā§āϰ⧇āϰ āĻĒā§āϰāĻ¸ā§āϤ= āĻ•ā§āώ⧇āĻ¤ā§āϰāĻĢāĻ˛ÃˇāĻĻ⧈āĻ°ā§āĻ˜ā§āϝ āĻāĻ•āĻ•
_____________________________________________
īŋŊāĻŦāĻ°ā§āĻ—āĻ•ā§āώ⧇āĻ¤ā§āϰīŋŊ
1.āĻŦāĻ°ā§āĻ—āĻ•ā§āώ⧇āĻ¤ā§āϰ⧇āϰ āĻ•ā§āώ⧇āĻ¤ā§āϰāĻĢāϞ = (āϝ⧇ āϕ⧋āύ āĻāĻ•āϟāĻŋ āĻŦāĻžāĻšā§āϰ āĻĻ⧈āĻ°ā§āĻ˜ā§āϝ)² āĻŦāĻ°ā§āĻ— āĻāĻ•āĻ•
2.āĻŦāĻ°ā§āĻ—āĻ•ā§āώ⧇āĻ¤ā§āϰ⧇āϰ āĻĒāϰāĻŋāϏ⧀āĻŽāĻž = 4 × āĻāĻ• āĻŦāĻžāĻšā§āϰ āĻĻ⧈āĻ°ā§āĻ˜ā§āϝ āĻāĻ•āĻ•
3.āĻŦāĻ°ā§āĻ—āĻ•ā§āώ⧇āĻ¤ā§āϰ⧇āϰ āĻ•āĻ°ā§āĻŖ=√2 × āĻāĻ• āĻŦāĻžāĻšā§āϰ āĻĻ⧈āĻ°ā§āĻ˜ā§āϝ āĻāĻ•āĻ•
4.āĻŦāĻ°ā§āĻ—āĻ•ā§āώ⧇āĻ¤ā§āϰ⧇āϰ āĻŦāĻžāĻšā§=√āĻ•ā§āώ⧇āĻ¤ā§āϰāĻĢāϞ āĻŦāĻž āĻĒāϰāĻŋāϏ⧀āĻŽāĻžÃˇ4 āĻāĻ•
_____________________________________________
īŋŊīŋŊāĻ¤ā§āϰāĻŋāĻ­ā§‚āϜīŋŊ
1.āϏāĻŽāĻŦāĻžāĻšā§ āĻ¤ā§āϰāĻŋāĻ­ā§‚āĻœā§‡āϰ āĻ•ā§āώ⧇āĻ¤ā§āϰāĻĢāϞ = √ž×(āĻŦāĻžāĻšā§)²
2.āϏāĻŽāĻŦāĻžāĻšā§ āĻ¤ā§āϰāĻŋāĻ­ā§‚āĻœā§‡āϰ āωāĻšā§āϚāϤāĻž = √3/2×(āĻŦāĻžāĻšā§)
3.āĻŦāĻŋāώāĻŽāĻŦāĻžāĻšā§ āĻ¤ā§āϰāĻŋāϭ⧁āĻœā§‡āϰ āĻ•ā§āώ⧇āĻ¤ā§āϰāĻĢāϞ = √s(s-a) (s-b) (s-c)
āĻāĻ–āĻžāύ⧇ a, b, c āĻ¤ā§āϰāĻŋāϭ⧁āĻœā§‡āϰ āϤāĻŋāύāϟāĻŋ āĻŦāĻžāĻšā§āϰ āĻĻ⧈āĻ°ā§āĻ˜ā§āϝ, s=āĻ…āĻ°ā§āϧāĻĒāϰāĻŋāϏ⧀āĻŽāĻž
★āĻĒāϰāĻŋāϏ⧀āĻŽāĻž 2s=(a+b+c)
4āϏāĻžāϧāĻžāϰāĻŖ āĻ¤ā§āϰāĻŋāĻ­ā§‚āĻœā§‡āϰ āĻ•ā§āώ⧇āĻ¤ā§āϰāĻĢāϞ = ÂŊ
(āĻ­ā§‚āĻŽāĻŋ×āωāĻšā§āϚāϤāĻž) āĻŦāĻ°ā§āĻ— āĻāĻ•āĻ•
5.āϏāĻŽāϕ⧋āĻŖā§€ āĻ¤ā§āϰāĻŋāĻ­ā§‚āĻœā§‡āϰ āĻ•ā§āώ⧇āĻ¤ā§āϰāĻĢāϞ = ÂŊ(a×b)
āĻāĻ–āĻžāύ⧇ āĻ¤ā§āϰāĻŋāϭ⧁āĻœā§‡āϰ āϏāĻŽāϕ⧋āĻŖ āϏāĻ‚āϞāĻ—ā§āύ āĻŦāĻžāĻšā§āĻĻā§āĻŦāϝāĻŧ a āĻāĻŦāĻ‚ b.
6.āϏāĻŽāĻĻā§āĻŦāĻŋāĻŦāĻžāĻšā§ āĻ¤ā§āϰāĻŋāĻ­ā§‚āĻœā§‡āϰ āĻ•ā§āώ⧇āĻ¤ā§āϰāĻĢāϞ = 2√4b²-a²/4 āĻāĻ–āĻžāύ⧇, a= āĻ­ā§‚āĻŽāĻŋ; b= āĻ…āĻĒāϰ āĻŦāĻžāĻšā§āĨ¤
7.āĻ¤ā§āϰāĻŋāϭ⧁āĻœā§‡āϰ āωāĻšā§āϚāϤāĻž = 2(āĻ•ā§āώ⧇āĻ¤ā§āϰāĻĢāϞ/āĻ­ā§‚āĻŽāĻŋ)
8.āϏāĻŽāϕ⧋āĻŖā§€ āĻ¤ā§āϰāĻŋāϭ⧁āĻœā§‡āϰ āĻ…āϤāĻŋāϭ⧁āϜ =√ āϞāĻŽā§āĻŦ²+āĻ­ā§‚āĻŽāĻŋ²
9.āϞāĻŽā§āĻŦ =√āĻ…āϤāĻŋāĻ­ā§‚āĻœÂ˛-āĻ­ā§‚āĻŽāĻŋ²
10.āĻ­ā§‚āĻŽāĻŋ = √āĻ…āϤāĻŋāĻ­ā§‚āĻœÂ˛-āϞāĻŽā§āĻŦ²
11.āϏāĻŽāĻĻā§āĻŦāĻŋāĻŦāĻžāĻšā§ āĻ¤ā§āϰāĻŋāϭ⧁āĻœā§‡āϰ āωāĻšā§āϚāϤāĻž = √b² - a²/4
āĻāĻ–āĻžāύ⧇ a= āĻ­ā§‚āĻŽāĻŋ; b= āϏāĻŽāĻžāύ āĻĻ⧁āχ āĻŦāĻžāĻšā§āϰ āĻĻ⧈āĻ°ā§āĻ˜ā§āϝāĨ¤
12.★āĻ¤ā§āϰāĻŋāϭ⧁āĻœā§‡āϰ āĻĒāϰāĻŋāϏ⧀āĻŽāĻž=āϤāĻŋāύ āĻŦāĻžāĻšā§āϰ āϏāĻŽāĻˇā§āϟāĻŋ
_____________________________________________
īŋŊīŋŊāϰāĻŽā§āĻŦāϏīŋŊ
1.āϰāĻŽā§āĻŦāϏ⧇āϰ āĻ•ā§āώ⧇āĻ¤ā§āϰāĻĢāϞ = ÂŊ× (āĻ•āĻ°ā§āĻŖāĻĻ⧁āχāϟāĻŋāϰ āϗ⧁āĻŖāĻĢāϞ)
2.āϰāĻŽā§āĻŦāϏ⧇āϰ āĻĒāϰāĻŋāϏ⧀āĻŽāĻž = 4× āĻāĻ• āĻŦāĻžāĻšā§āϰ āĻĻ⧈āĻ°ā§āĻ˜ā§āϝ
_____________________________________________īŋŊīŋŊāϏāĻžāĻŽāĻžāĻ¨ā§āϤāϰāĻŋāĻ•īŋŊ
1.āϏāĻžāĻŽāĻžāĻ¨ā§āϤāϰāĻŋāϕ⧇āϰ āĻ•ā§āώ⧇āĻ¤ā§āϰāĻĢāϞ = āĻ­ā§‚āĻŽāĻŋ × āωāĻšā§āϚāϤāĻž =
2.āϏāĻžāĻŽāĻžāĻ¨ā§āϤāϰāĻŋāϕ⧇āϰ āĻĒāϰāĻŋāϏ⧀āĻŽāĻž = 2×(āϏāĻ¨ā§āύāĻŋāĻšāĻŋāϤ āĻŦāĻžāĻšā§āĻĻā§āĻŦāϝāĻŧ⧇āϰ āϏāĻŽāĻˇā§āϟāĻŋ)
_____________________________________________
īŋŊīŋŊāĻŸā§āϰāĻžāĻĒāĻŋāϜāĻŋāϝāĻŧāĻžāĻŽīŋŊ
1. āĻŸā§āϰāĻžāĻĒāĻŋāϜāĻŋāϝāĻŧāĻžāĻŽā§‡āϰ āĻ•ā§āώ⧇āĻ¤ā§āϰāĻĢāϞ =ÂŊ×(āϏāĻŽāĻžāĻ¨ā§āϤāϰāĻžāϞ āĻŦāĻžāĻšā§ āĻĻ⧁āχāϟāĻŋāϰ āϝāĻžā§‡āĻ—āĻĢāϞ)×āωāĻšā§āϚāϤāĻž
_____________________________________________
īŋŊīŋŊ āϘāύāĻ•īŋŊ
1.āϘāύāϕ⧇āϰ āϘāύāĻĢāϞ = (āϝ⧇āϕ⧋āύ āĻŦāĻžāĻšā§)Âŗ āϘāύ āĻāĻ•āĻ•
2.āϘāύāϕ⧇āϰ āϏāĻŽāĻ—ā§āϰāϤāϞ⧇āϰ āĻ•ā§āώ⧇āĻ¤ā§āϰāĻĢāϞ = 6× āĻŦāĻžāĻšā§Â˛ āĻŦāĻ°ā§āĻ— āĻāĻ•āĻ•
3.āϘāύāϕ⧇āϰ āĻ•āĻ°ā§āĻŖ = √3×āĻŦāĻžāĻšā§ āĻāĻ•āĻ•
_____________________________________________
īŋŊīŋŊāφāϝāĻŧāϤāϘāύāĻ•īŋŊ
1.āφāϝāĻŧāϤāϘāύāϕ⧇āϰ āϘāύāĻĢāϞ = (āĻĻā§ˆā§°ā§āϘāĻžÃ—āĻĒā§āϰāĻ¸ā§āĻ¤Ã—āωāĻšā§āϚāϤāĻž) āϘāύ āĻāĻ•āĻ•
2.āφāϝāĻŧāϤāϘāύāϕ⧇āϰ āϏāĻŽāĻ—ā§āϰāϤāϞ⧇āϰ āĻ•ā§āώ⧇āĻ¤ā§āϰāĻĢāϞ = 2(ab + bc + ca) āĻŦāĻ°ā§āĻ— āĻāĻ•āĻ•
[ āϝ⧇āĻ–āĻžāύ⧇ a = āĻĻ⧈āĻ°ā§āĻ˜ā§āϝ b = āĻĒā§āϰāĻ¸ā§āϤ c = āωāĻšā§āϚāϤāĻž ]
3.āφāϝāĻŧāϤāϘāύāϕ⧇āϰ āĻ•āĻ°ā§āĻŖ = √a²+b²+c² āĻāĻ•āĻ•
4. āϚāĻžāϰāĻŋ āĻĻ⧇āĻ“āϝāĻŧāĻžāϞ⧇āϰ āĻ•ā§āώ⧇āĻ¤ā§āϰāĻĢāϞ = 2(āĻĻ⧈āĻ°ā§āĻ˜ā§āϝ + āĻĒā§āϰāĻ¸ā§āĻĨ)×āωāĻšā§āϚāϤāĻž
_____________________________________________
īŋŊīŋŊāĻŦ⧃āĻ¤ā§āϤīŋŊ
1.āĻŦ⧃āĻ¤ā§āϤ⧇āϰ āĻ•ā§āώ⧇āĻ¤ā§āϰāĻĢāϞ = Ī€r²=22/7r² {āĻāĻ–āĻžāύ⧇ Ī€=āĻ§ā§āϰ⧁āĻŦāĻ• 22/7, āĻŦ⧃āĻ¤ā§āϤ⧇āϰ āĻŦā§āϝāĻžāϏāĻžāĻ°ā§āϧ= r}
2. āĻŦ⧃āĻ¤ā§āϤ⧇āϰ āĻĒāϰāĻŋāϧāĻŋ = 2Ī€r
3. āĻ—ā§‹āϞāϕ⧇āϰ āĻĒ⧃āĻˇā§āĻ āϤāϞ⧇āϰ āĻ•ā§āώ⧇āĻ¤ā§āϰāĻĢāϞ = 4Ī€r² āĻŦāĻ°ā§āĻ— āĻāĻ•āĻ•
4. āĻ—ā§‹āϞāϕ⧇āϰ āφāϝāĻŧāϤāύ = 4Ī€rÂŗÃˇ3 āϘāύ āĻāĻ•āĻ•
5. h āωāĻšā§āϚāϤāĻžāϝāĻŧ āϤāϞāĻšā§āĻšā§‡āĻĻ⧇ āĻ‰ā§ŽāĻĒāĻ¨ā§āύ āĻŦ⧃āĻ¤ā§āϤ⧇āϰ āĻŦā§āϝāĻžāϏāĻžāĻ°ā§āϧ = √r²-h² āĻāĻ•āĻ•
6.āĻŦ⧃āĻ¤ā§āϤāϚāĻžāĻĒ⧇āϰ āĻĻ⧈āĻ°ā§āĻ˜ā§āϝ s=Ī€rθ/180° ,
āĻāĻ–āĻžāύ⧇ θ =āϕ⧋āĻŖ
_____________________________________________
īŋŊāϏāĻŽāĻŦ⧃āĻ¤ā§āϤāĻ­ā§‚āĻŽāĻŋāĻ• āϏāĻŋāϞāĻŋāĻ¨ā§āĻĄāĻžāϰ / āĻŦ⧇āϞāύīŋŊ
āϏāĻŽāĻŦ⧃āĻ¤ā§āϤāĻ­ā§‚āĻŽāĻŋāĻ• āϏāĻŋāϞāĻŋāĻ¨ā§āĻĄāĻžāϰ⧇āϰ āĻ­ā§‚āĻŽāĻŋāϰ āĻŦā§āϝāĻžāϏāĻžāĻ°ā§āϧ r āĻāĻŦāĻ‚ āωāĻšā§āϚāϤāĻž h āφāϰ āĻšā§‡āϞāĻžāύ⧋ āϤāϞ⧇āϰ āωāĻšā§āϚāϤāĻž l āĻšāϞ⧇,
1.āϏāĻŋāϞāĻŋāĻ¨ā§āĻĄāĻžāϰ⧇āϰ āφāϝāĻŧāϤāύ = Ī€r²h
2.āϏāĻŋāϞāĻŋāĻ¨ā§āĻĄāĻžāϰ⧇āϰ āĻŦāĻ•ā§āϰāϤāϞ⧇āϰ āĻ•ā§āώ⧇āĻ¤ā§āϰāĻĢāϞ (āϏāĻŋāĻāϏāĻ) = 2Ī€rhāĨ¤
3.āϏāĻŋāϞāĻŋāĻ¨ā§āĻĄāĻžāϰ⧇āϰ āĻĒ⧃āĻˇā§āĻ āϤāϞ⧇āϰ āĻ•ā§āώ⧇āĻ¤ā§āϰāĻĢāϞ (āϟāĻŋāĻāϏāĻ) = 2Ī€r (h + r)
_____________________________________________
īŋŊāϏāĻŽāĻŦ⧃āĻ¤ā§āϤāĻ­ā§‚āĻŽāĻŋāĻ• āϕ⧋āĻŖāĻ•īŋŊ
āϏāĻŽāĻŦ⧃āĻ¤ā§āϤāĻ­ā§‚āĻŽāĻŋāĻ• āĻ­ā§‚āĻŽāĻŋāϰ āĻŦā§āϝāĻžāϏāĻžāĻ°ā§āϧ r āĻāĻŦāĻ‚ āωāĻšā§āϚāϤāĻž h āφāϰ āĻšā§‡āϞāĻžāύ⧋ āϤāϞ⧇āϰ āωāĻšā§āϚāϤāĻž l āĻšāϞ⧇,
1.āϕ⧋āĻŖāϕ⧇āϰ āĻŦāĻ•ā§āϰāϤāϞ⧇āϰ āĻ•ā§āώ⧇āĻ¤ā§āϰāĻĢāϞ= Ī€rl āĻŦāĻ°ā§āĻ— āĻāĻ•āĻ•
2.āϕ⧋āĻŖāϕ⧇āϰ āϏāĻŽāϤāϞ⧇āϰ āĻ•ā§āώ⧇āĻ¤ā§āϰāĻĢāϞ= Ī€r(r+l) āĻŦāĻ°ā§āĻ— āĻāĻ•āĻ•
3.āϕ⧋āĻŖāϕ⧇āϰ āφāϝāĻŧāϤāύ= â…“Ī€r²h āϘāύ āĻāĻ•āĻ•
īŋŊ✮āĻŦāĻšā§āϭ⧁āĻœā§‡āϰ āĻ•āĻ°ā§āϪ⧇āϰ āϏāĻ‚āĻ–ā§āϝāĻž= n(n-3)/2
✮āĻŦāĻšā§āϭ⧁āĻœā§‡āϰ āϕ⧋āĻŖāϗ⧁āϞāĻŋāϰ āϏāĻŽāĻˇā§āϟāĻŋ=(2n-4)āϏāĻŽāϕ⧋āĻŖ
āĻāĻ–āĻžāύ⧇ n=āĻŦāĻžāĻšā§āϰ āϏāĻ‚āĻ–ā§āϝāĻž
★āϏ⧁āώāĻŽ āĻŦāĻšā§āϭ⧁āϜ āĻāϰ āĻ•ā§āώ⧇āĻ¤ā§āϰ⧇
āĻ…āĻ¨ā§āϤāσāϕ⧋āĻŖ + āĻŦāĻšāĻŋāσāϕ⧋āĻŖ=180°
āĻŦāĻžāĻšā§ āϏāĻ‚āĻ–ā§āϝāĻž=360°/āĻŦāĻšāĻŋāσ āϕ⧋āĻŖ
★āϚāϤ⧁āĻ°ā§āϭ⧁āĻœā§‡āϰ āĻĒāϰāĻŋāϏ⧀āĻŽāĻž=āϚāĻžāϰ āĻŦāĻžāĻšā§āϰ āϏāĻŽāĻˇā§āϟāĻŋ
_____________________________________________
īŋŊāĻ¤ā§āϰāĻŋāϕ⧋āĻŖāĻŽāĻŋāϤāĻŋāϰ āϏ⧂āĻ¤ā§āϰāĻžāĻŦāϞ⧀āσīŋŊ
1. sinθ=⤞āĻŽā§āĻŦ/āĻ…āϤāĻŋāĻ­ā§‚āϜ
2. cosθ=āĻ­ā§‚āĻŽāĻŋ/āĻ…āϤāĻŋāĻ­ā§‚āϜ
3. taneθ=⤞āĻŽā§āĻŦ/āĻ­ā§‚āĻŽāĻŋ
4. cotθ=āĻ­ā§‚āĻŽāĻŋ/āϞāĻŽā§āĻŦ
5. secθ=āĻ…āϤāĻŋāĻ­ā§‚āϜ/āĻ­ā§‚āĻŽāĻŋ
6. cosecθ=āĻ…āϤāĻŋāĻ­ā§‚āϜ/āϞāĻŽā§āĻŦ
7. sinθ=1/cosecθ, cosecθ=1/sinθ
8. cosθ=1/secθ, secθ=1/cosθ
9. tanθ=1/cotθ, cotθ=1/tanθ
10. sin²θ + cos²θ= 1
11. sin²θ = 1 - cos²θ
12. cos²θ = 1- sin²θ
13. sec²θ - tan²θ = 1
14. sec²θ = 1+ tan²θ
15. tan²θ = sec²θ - 1
16, cosec²θ - cot²θ = 1
17. cosec²θ = cot²θ + 1
18. cot²θ = cosec²θ - 1
_____________________________________________
īŋŊīŋŊ āĻŦāĻŋāϝāĻŧāĻžā§‡āϗ⧇āϰ āϏ⧂āĻ¤ā§āϰāĻžāĻŦāϞāĻŋīŋŊ
1. āĻŦāĻŋāϝāĻŧāĻžā§‡āϜāύ-āĻŦāĻŋāϝāĻŧā§‹āĻœā§āϝ =āĻŦāĻŋāϝāĻŧā§‹āĻ—āĻĢāϞāĨ¤
2.āĻŦāĻŋāϝāĻŧāĻžā§‡āϜāύ=āĻŦāĻŋāϝāĻŧāĻžā§‡āĻ—āĻĢ + āĻŦāĻŋāϝāĻŧāĻžā§‡āĻœā§āϝ
3.āĻŦāĻŋāϝāĻŧāĻžā§‡āĻœā§āϝ=āĻŦāĻŋāϝāĻŧāĻžā§‡āϜāύ-āĻŦāĻŋāϝāĻŧāĻžā§‡āĻ—āĻĢāϞ
_____________________________________________
īŋŊīŋŊ āϗ⧁āϪ⧇āϰ āϏ⧂āĻ¤ā§āϰāĻžāĻŦāϞāĻŋīŋŊ
1.āϗ⧁āĻŖāĻĢāϞ =āϗ⧁āĻŖā§āϝ × āϗ⧁āĻŖāĻ•
2.āϗ⧁āĻŖāĻ• = āϗ⧁āĻŖāĻĢāϞ Ãˇ āϗ⧁āĻŖā§āϝ
3.āϗ⧁āĻŖā§āϝ= āϗ⧁āĻŖāĻĢāϞ Ãˇ āϗ⧁āĻŖāĻ•
_____________________________________________
īŋŊīŋŊ āĻ­āĻžāϗ⧇āϰ āϏ⧂āĻ¤ā§āϰāĻžāĻŦāϞāĻŋīŋŊ
āύāĻŋāσāĻļ⧇āώ⧇ āĻŦāĻŋāĻ­āĻžāĻœā§āϝ āύāĻž āĻšāϞ⧇āĨ¤
1.āĻ­āĻžāĻœā§āϝ= āĻ­āĻžāϜāĻ• × āĻ­āĻžāĻ—āĻĢāϞ + āĻ­āĻžāĻ—āĻļ⧇āώāĨ¤
2.āĻ­āĻžāϜāĻ•= (āĻ­āĻžāĻœā§āĻ¯â€” āĻ­āĻžāĻ—āĻļ⧇āώ) Ãˇ āĻ­āĻžāĻ—āĻĢāϞāĨ¤
3.āĻ­āĻžāĻ—āĻĢāϞ = (āĻ­āĻžāĻœā§āϝ — āĻ­āĻžāĻ—āĻļ⧇āώ)Ãˇ āĻ­āĻžāϜāĻ•āĨ¤
*āύāĻŋāσāĻļ⧇āώ⧇ āĻŦāĻŋāĻ­āĻžāĻœā§āϝ āĻšāϞ⧇āĨ¤
4.āĻ­āĻžāϜāĻ•= āĻ­āĻžāĻœā§āĻ¯Ãˇ āĻ­āĻžāĻ—āĻĢāϞāĨ¤
5.āĻ­āĻžāĻ—āĻĢāϞ = āĻ­āĻžāĻœā§āϝ Ãˇ āĻ­āĻžāϜāĻ•āĨ¤
6.āĻ­āĻžāĻœā§āϝ = āĻ­āĻžāϜāĻ• × āĻ­āĻžāĻ—āĻĢāϞāĨ¤
_____________________________________________
īŋŊīŋŊāĻ­āĻ—ā§āύāĻžāĻ‚āĻļ⧇āϰ āϞ.āϏāĻž.āϗ⧁ āĻ“ āĻ—.āϏāĻž.āϗ⧁ āϏ⧂āĻ¤ā§āϰāĻžāĻŦāϞ⧀ īŋŊ
1.āĻ­āĻ—ā§āύāĻžāĻ‚āĻļ⧇āϰ āĻ—.āϏāĻž.āϗ⧁ = āϞāĻŦāϗ⧁āϞāĻžā§‡āϰ āĻ—.āϏāĻž.āϗ⧁ / āĻšāϰāϗ⧁āϞāĻžā§‡āϰ āϞ.āϏāĻž.āϗ⧁
2.āĻ­āĻ—ā§āύāĻžāĻ‚āĻļ⧇āϰ āϞ.āϏāĻž.āϗ⧁ =āϞāĻŦāϗ⧁āϞāĻžā§‡āϰ āϞ.āϏāĻž.āϗ⧁ /āĻšāϰāϗ⧁āϞāĻžāϰ āĻ—.āϏāĻž.āϗ⧁
3.āĻ­āĻ—ā§āύāĻžāĻ‚āĻļāĻĻā§āĻŦāϝāĻŧ⧇āϰ āϗ⧁āĻŖāĻĢāϞ = āĻ­āĻ—ā§āύāĻžāĻ‚āĻļāĻĻā§āĻŦāϝāĻŧ⧇āϰ āϞ.āϏāĻž.āϗ⧁ × āĻ­āĻ—ā§āύāĻžāĻ‚āĻļāĻĻā§āĻŦāϝāĻŧ⧇āϰ āĻ—.āϏāĻž.āϗ⧁.
_____________________________________________
īŋŊāĻ—āĻĄāĻŧ āύāĻŋāĻ°ā§āĻŖāϝāĻŧ īŋŊ
1.āĻ—āĻĄāĻŧ = āϰāĻžāĻļāĻŋ āϏāĻŽāĻˇā§āϟāĻŋ /āϰāĻžāĻļāĻŋ āϏāĻ‚āĻ–ā§āϝāĻž
2.āϰāĻžāĻļāĻŋāϰ āϏāĻŽāĻˇā§āϟāĻŋ = āĻ—āĻĄāĻŧ ×āϰāĻžāĻļāĻŋāϰ āϏāĻ‚āĻ–ā§āϝāĻž
3.āϰāĻžāĻļāĻŋāϰ āϏāĻ‚āĻ–ā§āϝāĻž = āϰāĻžāĻļāĻŋāϰ āϏāĻŽāĻˇā§āϟāĻŋ Ãˇ āĻ—āĻĄāĻŧ
4.āφāϝāĻŧ⧇āϰ āĻ—āĻĄāĻŧ = āĻŽāĻžā§‡āϟ āφāϝāĻŧ⧇āϰ āĻĒāϰāĻŋāĻŽāĻžāĻŖ / āĻŽāĻžā§‡āϟ āϞāĻžā§‡āϕ⧇āϰ āϏāĻ‚āĻ–ā§āϝāĻž
5.āϏāĻ‚āĻ–ā§āϝāĻžāϰ āĻ—āĻĄāĻŧ = āϏāĻ‚āĻ–ā§āϝāĻžāϗ⧁āϞāĻžā§‡āϰ āϝāĻžā§‡āĻ—āĻĢāϞ /āϏāĻ‚āĻ–ā§āϝāĻžāϰ āĻĒāϰāĻŋāĻŽāĻžāύ āĻŦāĻž āϏāĻ‚āĻ–ā§āϝāĻž
6.āĻ•ā§āϰāĻŽāĻŋāĻ• āϧāĻžāϰāĻžāϰ āĻ—āĻĄāĻŧ =āĻļ⧇āώ āĻĒāĻĻ +ā§§āĻŽ āĻĒāĻĻ /2
_____________________________________________
īŋŊīŋŊāϏ⧁āĻĻāĻ•āώāĻžāϰ āĻĒāϰāĻŋāĻŽāĻžāύ āύāĻŋāĻ°ā§āύāϝāĻŧ⧇āϰ āϏ⧂āĻ¤ā§āϰāĻžāĻŦāϞ⧀īŋŊ
1. āϏ⧁āĻĻ = (āϏ⧁āĻĻ⧇āϰ āĻšāĻžāĻ°Ã—āφāϏāĻ˛Ã—āϏāĻŽāϝāĻŧ) Ãˇā§§ā§Ļā§Ļ
2. āϏāĻŽāϝāĻŧ = (100× āϏ⧁āĻĻ)Ãˇ (āφāϏāĻ˛Ã—āϏ⧁āĻĻ⧇āϰ āĻšāĻžāϰ)
3. āϏ⧁āĻĻ⧇āϰ āĻšāĻžāϰ = (100×āϏ⧁āĻĻ)Ãˇ(āφāϏāĻ˛Ã—āϏāĻŽāϝāĻŧ)
4. āφāϏāϞ = (100×āϏ⧁āĻĻ)Ãˇ(āϏāĻŽāϝāĻŧ×āϏ⧁āĻĻ⧇āϰ āĻšāĻžāϰ)
5. āφāϏāϞ = {100×(āϏ⧁āĻĻ-āĻŽā§‚āϞ)}Ãˇ(100+āϏ⧁āĻĻ⧇āϰ āĻšāĻžāĻ°Ã—āϏāĻŽāϝāĻŧ )
6. āϏ⧁āĻĻāĻžāϏāϞ = āφāϏāϞ + āϏ⧁āĻĻ
7. āϏ⧁āĻĻāĻžāϏāϞ = āφāϏāϞ ×(1+ āϏ⧁āĻĻ⧇āϰ āĻšāĻžāϰ)× āϏāĻŽāϝāĻŧ |[āϚāĻ•ā§āϰāĻŦ⧃āĻĻā§āϧāĻŋ āϏ⧁āĻĻ⧇āϰ āĻ•ā§āώ⧇āĻ¤ā§āϰ⧇]āĨ¤
_____________________________________________
īŋŊīŋŊāϞāĻžāĻ­-āĻ•ā§āώāϤāĻŋāϰ āĻāĻŦāĻ‚ āĻ•ā§āϰāϝāĻŧ-āĻŦāĻŋāĻ•ā§āϰāϝāĻŧ⧇āϰ āϏ⧂āĻ¤ā§āϰāĻžāĻŦāϞ⧀īŋŊ
1. āϞāĻžāĻ­ = āĻŦāĻŋāĻ•ā§āϰāϝāĻŧāĻŽā§‚āĻ˛ā§āϝ-āĻ•ā§āϰāϝāĻŧāĻŽā§‚āĻ˛ā§āϝ
2.āĻ•ā§āώāϤāĻŋ = āĻ•ā§āϰāϝāĻŧāĻŽā§‚āĻ˛ā§āϝ-āĻŦāĻŋāĻ•ā§āϰāϝāĻŧāĻŽā§‚āĻ˛ā§āϝ
3.āĻ•ā§āϰāϝāĻŧāĻŽā§‚āĻ˛ā§āϝ = āĻŦāĻŋāĻ•ā§āϰāϝāĻŧāĻŽā§‚āĻ˛ā§āϝ-āϞāĻžāĻ­
āĻ…āĻĨāĻŦāĻž
āĻ•ā§āϰāϝāĻŧāĻŽā§‚āĻ˛ā§āϝ = āĻŦāĻŋāĻ•ā§āϰāϝāĻŧāĻŽā§‚āĻ˛ā§āϝ + āĻ•ā§āώāϤāĻŋ
4.āĻŦāĻŋāĻ•ā§āϰāϝāĻŧāĻŽā§‚āĻ˛ā§āϝ = āĻ•ā§āϰāϝāĻŧāĻŽā§‚āĻ˛ā§āϝ + āϞāĻžāĻ­
āĻ…āĻĨāĻŦāĻž
āĻŦāĻŋāĻ•ā§āϰāϝāĻŧāĻŽā§‚āĻ˛ā§āϝ = āĻ•ā§āϰāϝāĻŧāĻŽā§‚āĻ˛ā§āϝ-āĻ•ā§āώāϤāĻŋ
_____________________________________________
īŋŊīŋŊ1-100 āĻĒāĻ°ā§āϝāĻ¨ā§āϤ āĻŽā§ŒāϞāĻŋāĻ• āϏāĻ‚āĻ–ā§āϝāĻžāĻŽāύ⧇ āϰāĻžāĻ–āĻžāϰ āϏāĻšāϜ āωāĻĒāĻžāϝāĻŧāσīŋŊ
āĻļāĻ°ā§āϟāĻ•āĻžāϟ :- 44 -22 -322-321
★1āĻĨ⧇āϕ⧇100āĻĒāĻ°ā§āϝāĻ¨ā§āϤ āĻŽā§ŒāϞāĻŋāĻ• āϏāĻ‚āĻ–ā§āϝāĻž=25āϟāĻŋ
★1āĻĨ⧇āϕ⧇10āĻĒāĻ°ā§āϝāĻ¨ā§āϤ āĻŽā§ŒāϞāĻŋāĻ• āϏāĻ‚āĻ–ā§āϝāĻž=4āϟāĻŋ 2,3,5,7
★11āĻĨ⧇āϕ⧇20āĻĒāĻ°ā§āϝāĻ¨ā§āϤ āĻŽā§ŒāϞāĻŋāĻ• āϏāĻ‚āĻ–ā§āϝāĻž=4āϟāĻŋ 11,13,17,19
★21āĻĨ⧇āϕ⧇30āĻĒāĻ°ā§āϝāĻ¨ā§āϤ āĻŽā§ŒāϞāĻŋāĻ• āϏāĻ‚āĻ–ā§āϝāĻž=2āϟāĻŋ 23,29
★31āĻĨ⧇āϕ⧇40āĻĒāĻ°ā§āϝāĻ¨ā§āϤ āĻŽā§ŒāϞāĻŋāĻ• āϏāĻ‚āĻ–ā§āϝāĻž=2āϟāĻŋ 31,37
★41āĻĨ⧇āϕ⧇50āĻĒāĻ°ā§āϝāĻ¨ā§āϤ āĻŽā§ŒāϞāĻŋāĻ• āϏāĻ‚āĻ–ā§āϝāĻž=3āϟāĻŋ 41,43,47
★51āĻĨ⧇āϕ⧇ 60āĻĒāĻ°ā§āϝāĻ¨ā§āϤ āĻŽā§ŒāϞāĻŋāĻ• āϏāĻ‚āĻ–ā§āϝāĻž=2āϟāĻŋ 53,59
★61āĻĨ⧇āϕ⧇70āĻĒāĻ°ā§āϝāĻ¨ā§āϤ āĻŽā§ŒāϞāĻŋāĻ• āϏāĻ‚āĻ–ā§āϝāĻž=2āϟāĻŋ 61,67
★71āĻĨ⧇āϕ⧇80 āĻĒāĻ°ā§āϝāĻ¨ā§āϤ āĻŽā§ŒāϞāĻŋāĻ• āϏāĻ‚āĻ–ā§āϝāĻž=3āϟāĻŋ 71,73,79
★81āĻĨ⧇āϕ⧇ 90āĻĒāĻ°ā§āϝāĻ¨ā§āϤ āĻŽā§ŒāϞāĻŋāĻ• āϏāĻ‚āĻ–ā§āϝāĻž=2āϟāĻŋ 83,89
★91āĻĨ⧇āϕ⧇100āĻĒāĻ°ā§āϝāĻ¨ā§āϤ āĻŽā§ŒāϞāĻŋāĻ• āϏāĻ‚āĻ–ā§āϝāĻž=1āϟāĻŋ 97
īŋŊ1-100 āĻĒāĻ°ā§āϝāĻ¨ā§āϤ āĻŽā§ŒāϞāĻŋāĻ• āϏāĻ‚āĻ–ā§āϝāĻž 25 āϟāĻŋāσ
2,3,5,7,11,13,17,19,23,29,31,37,41,43,47,53,59,61,67,71,73,79,83,89,97
īŋŊ1-100āĻĒāĻ°ā§āϝāĻ¨ā§āϤ āĻŽā§ŒāϞāĻŋāĻ• āϏāĻ‚āĻ–ā§āϝāĻžāϰ āϝ⧋āĻ—āĻĢāϞ
1060āĨ¤
_____________________________________________
īŋŊ1.āϕ⧋āύ āĻ•āĻŋāϛ⧁āϰ
āĻ—āϤāĻŋāĻŦ⧇āĻ—= āĻ…āϤāĻŋāĻ•ā§āϰāĻžāĻ¨ā§āϤ āĻĻā§‚āϰāĻ¤ā§āĻŦ/āϏāĻŽāϝāĻŧ
2.āĻ…āϤāĻŋāĻ•ā§āϰāĻžāĻ¨ā§āϤ āĻĻā§‚āϰāĻ¤ā§āĻŦ = āĻ—āϤāĻŋāĻŦ⧇āĻ—Ã—āϏāĻŽāϝāĻŧ
3.āϏāĻŽāϝāĻŧ= āĻŽā§‹āϟ āĻĻā§‚āϰāĻ¤ā§āĻŦ/āĻŦ⧇āĻ—
4.āĻ¸ā§āϰ⧋āϤ⧇āϰ āĻ…āύ⧁āϕ⧂āϞ⧇ āύ⧌āĻ•āĻžāϰ āĻ•āĻžāĻ°ā§āϝāĻ•āϰ⧀ āĻ—āϤāĻŋāĻŦ⧇āĻ— = āύ⧌āĻ•āĻžāϰ āĻĒā§āϰāĻ•ā§ƒāϤ āĻ—āϤāĻŋāĻŦ⧇āĻ— + āĻ¸ā§āϰ⧋āϤ⧇āϰ āĻ—āϤāĻŋāĻŦ⧇āĻ—āĨ¤
5.āĻ¸ā§āϰ⧋āϤ⧇āϰ āĻĒā§āϰāϤāĻŋāϕ⧂āϞ⧇ āύ⧌āĻ•āĻžāϰ āĻ•āĻžāĻ°ā§āϝāĻ•āϰ⧀ āĻ—āϤāĻŋāĻŦ⧇āĻ— = āύ⧌āĻ•āĻžāϰ āĻĒā§āϰāĻ•ā§ƒāϤ āĻ—āϤāĻŋāĻŦ⧇āĻ— - āĻ¸ā§āϰ⧋āϤ⧇āϰ āĻ—āϤāĻŋāĻŦ⧇āĻ—
_____________________________________________
īŋŊāϏāϰāϞ āϏ⧁āĻĻīŋŊ
āϝāĻĻāĻŋ āφāϏāϞ=P, āϏāĻŽāϝāĻŧ=T, āϏ⧁āĻĻ⧇āϰ āĻšāĻžāϰ=R, āϏ⧁āĻĻ-āφāϏāϞ=A āĻšāϝāĻŧ, āϤāĻžāĻšāϞ⧇
1.āϏ⧁āĻĻ⧇āϰ āĻĒāϰāĻŋāĻŽāĻžāĻŖ= PRT/100
2.āφāϏāϞ= 100×āϏ⧁āĻĻ-āφāϏāϞ(A)/100+TR
_____________________________________________
īŋŊīŋŊāύ⧌āĻ•āĻžāϰ āĻ—āϤāĻŋ āĻ¸ā§āϰ⧋āϤ⧇āϰ āĻ…āύ⧁āϕ⧂āϞ⧇ āϘāĻ¨ā§āϟāĻžāϝāĻŧ 10 āĻ•āĻŋ.āĻŽāĻŋ. āĻāĻŦāĻ‚ āĻ¸ā§āϰ⧋āϤ⧇āϰ āĻĒā§āϰāϤāĻŋāϕ⧂āϞ⧇ 2 āĻ•āĻŋ.āĻŽāĻŋ.āĨ¤ āĻ¸ā§āϰ⧋āϤ⧇āϰ āĻŦ⧇āĻ— āĻ•āϤ?
★āĻŸā§‡āĻ•āύāĻŋāĻ•-
āĻ¸ā§āϰ⧋āϤ⧇āϰ āĻŦ⧇āĻ— = (āĻ¸ā§āϰ⧋āϤ⧇āϰ āĻ…āύ⧁āϕ⧂āϞ⧇ āύ⧌āĻ•āĻžāϰ āĻŦ⧇āĻ— - āĻ¸ā§āϰ⧋āϤ⧇āϰ āĻĒā§āϰāϤāĻŋāϕ⧂āϞ⧇ āύ⧌āĻ•āĻžāϰ āĻŦ⧇āĻ—) /2
= (10 - 2)/2=
= 4 āĻ•āĻŋ.āĻŽāĻŋ.
īŋŊāĻāĻ•āϟāĻŋ āύ⧌āĻ•āĻž āĻ¸ā§āϰ⧋āϤ⧇āϰ āĻ…āύ⧁āϕ⧂āϞ⧇ āϘāĻ¨ā§āϟāĻžāϝāĻŧ 8 āĻ•āĻŋ.āĻŽāĻŋ.āĻāĻŦāĻ‚ āĻ¸ā§āϰ⧋āϤ⧇āϰ āĻĒā§āϰāϤāĻŋāϕ⧂āϞ⧇ āϘāĻ¨ā§āϟāĻžāϝāĻŧ 4 āĻ•āĻŋ.āĻŽāĻŋ.
āϝāĻžāϝāĻŧāĨ¤ āύ⧌āĻ•āĻžāϰ āĻŦ⧇āĻ— āĻ•āϤ?
★ āĻŸā§‡āĻ•āύāĻŋāĻ•-
āύ⧌āĻ•āĻžāϰ āĻŦ⧇āĻ— = (āĻ¸ā§āϰ⧋āϤ⧇āϰ āĻ…āύ⧁āϕ⧂āϞ⧇ āύ⧌āĻ•āĻžāϰ āĻŦ⧇āĻ—+āĻ¸ā§āϰ⧋āϤ⧇āϰ āĻĒā§āϰāϤāĻŋāϕ⧂āϞ⧇ āύ⧌āĻ•āĻžāϰ āĻŦ⧇āĻ—)/2
= (8 + 4)/2
=6 āĻ•āĻŋ.āĻŽāĻŋ.
īŋŊāύ⧌āĻ•āĻž āĻ“ āĻ¸ā§āϰ⧋āϤ⧇āϰ āĻŦ⧇āĻ— āϘāĻ¨ā§āϟāĻžāϝāĻŧ āϝāĻĨāĻžāĻ•ā§āϰāĻŽā§‡ 10 āĻ•āĻŋ.āĻŽāĻŋ. āĻ“ 5 āĻ•āĻŋ.āĻŽāĻŋ.āĨ¤ āύāĻĻā§€āĻĒāĻĨ⧇ 45 āĻ•āĻŋ.āĻŽāĻŋ. āĻĒāĻĨ āĻāĻ•āĻŦāĻžāϰ āĻ—āĻŋāϝāĻŧ⧇ āĻĢāĻŋāϰ⧇ āφāϏāϤ⧇ āĻ•āϤ āϏāĻŽāϝāĻŧ āϞāĻžāĻ—āĻŦ⧇?
āĻŸā§‡āĻ•āύāĻŋāĻ•-
★āĻŽāĻžā§‡āϟ āϏāĻŽāϝāĻŧ = [(āĻŽāĻžā§‡āϟ āĻĻā§‚āϰāĻ¤ā§āĻŦ/ āĻ…āύ⧁āϕ⧂āϞ⧇ āĻŦ⧇āĻ—) + (āĻŽāĻžā§‡āϟ āĻĻā§‚āϰāĻ¤ā§āĻŦ/āĻĒā§āϰāϤāĻŋāϕ⧂āϞ⧇ āĻŦ⧇āĻ—)]
āωāĻ¤ā§āϤāϰ:āĻ¸ā§āϰ⧋āϤ⧇āϰ āĻ…āύ⧁āϕ⧂āϞ⧇ āύ⧌āĻ•āĻžāϰāĻŦ⧇āĻ— = (10+5) = 15 āĻ•āĻŋ.āĻŽāĻŋ.
āĻ¸ā§āϰ⧋āϤ⧇āϰ āĻĒā§āϰāϤāĻŋāϕ⧂āϞ⧇ āύ⧌āĻ•āĻžāϰ āĻŦ⧇āĻ— = (10-5) = 5āĻ•āĻŋ.āĻŽāĻŋ.
[(45/15) +(45/5)]
= 3+9
=12 āϘāĻ¨ā§āϟāĻž
_____________________________________________
īŋŊ★āϏāĻŽāĻžāĻ¨ā§āϤāϰ āϧāĻžāϰāĻžāϰ āĻ•ā§āϰāĻŽāĻŋāĻ• āϏāĻ‚āĻ–ā§āϝāĻžāϰ āϝ⧋āĻ—āĻĢāϞ-
(āϝāĻ–āύ āϏāĻ‚āĻ–ā§āϝāĻžāϟāĻŋ1 āĻĨ⧇āϕ⧇ āĻļ⧁āϰ⧁)1+2+3+4+......+n āĻšāϞ⧇ āĻāϰ⧂āĻĒ āϧāĻžāϰāĻžāϰ āϏāĻŽāĻˇā§āϟāĻŋ= [n(n+1)/2]
n=āĻļ⧇āώ āϏāĻ‚āĻ–ā§āϝāĻž āĻŦāĻž āĻĒāĻĻ āϏāĻ‚āĻ–ā§āϝāĻž s=āϝ⧋āĻ—āĻĢāϞ
īŋŊ āĻĒā§āϰāĻļā§āύāσ 1+2+3+....+100 =?
īŋŊ āϏāĻŽāĻžāϧāĻžāύāσ[n(n+1)/2]
= [100(100+1)/2]
= 5050
īŋŊ★āϏāĻŽāĻžāĻ¨ā§āϤāϰ āϧāĻžāϰāĻžāϰ āĻŦāĻ°ā§āĻ— āϝ⧋āĻ— āĻĒāĻĻā§āϧāϤāĻŋāϰ āĻ•ā§āώ⧇āĻ¤ā§āϰ⧇,-
āĻĒā§āϰāĻĨāĻŽ n āĻĒāĻĻ⧇āϰ āĻŦāĻ°ā§āϗ⧇āϰ āϏāĻŽāĻˇā§āϟāĻŋ
S= [n(n+1)2n+1)/6]
(āϝāĻ–āύ 1² + 2²+ 3² + 4²........ +n²)
īŋŊāĻĒā§āϰāĻļā§āύāσ(1² + 3²+ 5² + ....... +31²) āϏāĻŽāĻžāύ āĻ•āϤ?
īŋŊāϏāĻŽāĻžāϧāĻžāύāσ S=[n(n+1)2n+1)/6]
= [31(31+1)2×31+1)/6]
=31
īŋŊ★āϏāĻŽāĻžāĻ¨ā§āϤāϰ āϧāĻžāϰāĻžāϰ āϘāύāϝ⧋āĻ— āĻĒāĻĻā§āϧāϤāĻŋāϰ āĻ•ā§āώ⧇āĻ¤ā§āϰ⧇-
āĻĒā§āϰāĻĨāĻŽ n āĻĒāĻĻ⧇āϰ āϘāύ⧇āϰ āϏāĻŽāĻˇā§āϟāĻŋ S= [n(n+1)/2]2
(āϝāĻ–āύ 1Âŗ+2Âŗ+3Âŗ+.............+nÂŗ)
īŋŊāĻĒā§āϰāĻļā§āύāσ1Âŗ+2Âŗ+3Âŗ+4Âŗ+â€Ļâ€Ļâ€Ļâ€Ļ+10Âŗ=?
īŋŊāϏāĻŽāĻžāϧāĻžāύāσ [n(n+1)/2]2
= [10(10+1)/2]2
= 3025
_____________________________________________
īŋŊ★āĻĒāĻĻ āϏāĻ‚āĻ–ā§āϝāĻž āĻ“ āĻĒāĻĻ āϏāĻ‚āĻ–ā§āϝāĻžāϰ āϏāĻŽāĻˇā§āϟāĻŋ āύāĻŋāĻ°ā§āύāϝāĻŧ⧇āϰ āĻ•ā§āώ⧇āĻ¤ā§āϰ⧇āσ
āĻĒāĻĻ āϏāĻ‚āĻ–ā§āϝāĻž N= [(āĻļ⧇āώ āĻĒāĻĻ â€“ āĻĒā§āϰāĻĨāĻŽ āĻĒāĻĻ)/āĻĒā§āϰāϤāĻŋ āĻĒāĻĻ⧇ āĻŦ⧃āĻĻā§āϧāĻŋ] +1
īŋŊāĻĒā§āϰāĻļā§āύāσ5+10+15+â€Ļâ€Ļâ€Ļâ€Ļ+50=?
īŋŊāϏāĻŽāĻžāϧāĻžāύāσ āĻĒāĻĻāϏāĻ‚āĻ–ā§āϝāĻž = [(āĻļ⧇āώ āĻĒāĻĻ â€“ āĻĒā§āϰāĻĨāĻŽāĻĒāĻĻ)/āĻĒā§āϰāϤāĻŋ āĻĒāĻĻ⧇ āĻŦ⧃āĻĻā§āϧāĻŋ]+1
= [(50 – 5)/5] + 1
=10
āϏ⧁āϤāϰāĻžāĻ‚ āĻĒāĻĻ āϏāĻ‚āĻ–ā§āϝāĻžāϰ āϏāĻŽāĻˇā§āϟāĻŋ
= [(5 + 50)/2] ×10
= 275
īŋŊ★ n āϤāĻŽ āĻĒāĻĻ=a + (n-1)d
āĻāĻ–āĻžāύ⧇, n =āĻĒāĻĻāϏāĻ‚āĻ–ā§āϝāĻž, a = 1āĻŽ āĻĒāĻĻ, d= āϏāĻžāϧāĻžāϰāĻŖ āĻ…āĻ¨ā§āϤāϰ
īŋŊāĻĒā§āϰāĻļā§āύāσ 5+8+11+14+.......āϧāĻžāϰāĻžāϟāĻŋāϰ āϕ⧋āύ āĻĒāĻĻ 302?
īŋŊ āϏāĻŽāĻžāϧāĻžāύāσ āϧāϰāĻŋ, n āϤāĻŽ āĻĒāĻĻ =302
āĻŦāĻž, a + (n-1)d=302
āĻŦāĻž, 5+(n-1)3 =302
āĻŦāĻž, 3n=300
āĻŦāĻž, n=100
īŋŊāϏāĻŽāĻžāĻ¨ā§āϤāϰ āϧāĻžāϰāĻžāϰ āĻ•ā§āϰāĻŽāĻŋāĻ• āĻŦāĻŋāĻœā§‹āĻĄāĻŧ āϏāĻ‚āĻ–ā§āϝāĻžāϰ āϝ⧋āĻ—āĻĢāϞ-S=M² āĻāĻ–āĻžāύ⧇,M=āĻŽāĻ§ā§āϝ⧇āĻŽāĻž=(1āĻŽ āϏāĻ‚āĻ–ā§āϝāĻž+āĻļ⧇āώ āϏāĻ‚āĻ–ā§āϝāĻž)/2
īŋŊāĻĒā§āϰāĻļā§āύāσ1+3+5+.......+19=āĻ•āϤ?
īŋŊ āϏāĻŽāĻžāϧāĻžāύāσ S=M²
={(1+19)/2}²
=(20/2)²
=100
_____________________________________________
īŋŊīŋŊ āĻŦāĻ°ā§āĻ—īŋŊ
(1)²=1,(11)²=121,(111)²=12321,(1111)²=1234321,(11111)²=123454321
īŋŊīŋŊāύāĻŋāϝāĻŧāĻŽ-āϝāϤāϗ⧁āϞ⧋ 1 āĻĒāĻžāĻļāĻžāĻĒāĻžāĻļāĻŋ āύāĻŋāϝāĻŧ⧇ āĻŦāĻ°ā§āĻ— āĻ•āϰāĻž āĻšāĻŦ⧇, āĻŦāĻ°ā§āĻ— āĻĢāϞ⧇ 1 āĻĨ⧇āϕ⧇ āĻļ⧁āϰ⧁ āĻ•āϰ⧇ āĻĒāϰ āĻĒāϰ āϏ⧇āχ āϏāĻ‚āĻ–ā§āϝāĻž āĻĒāĻ°ā§āϝāĻ¨ā§āϤ āϞāĻŋāĻ–āϤ⧇ āĻšāĻŦ⧇ āĻāĻŦāĻ‚ āϤāĻžāϰāĻĒāϰ āϏ⧇āχ āϏāĻ‚āĻ–ā§āϝāĻžāϰ āĻĒāϰ āĻĨ⧇āϕ⧇ āĻ…āϧāσāĻ•ā§āϰāĻŽā§‡ āĻĒāϰāĻĒāϰ āϏāĻ‚āĻ–ā§āϝāĻžāϗ⧁āϞ⧋ āϞāĻŋāϖ⧇ 1 āϏāĻ‚āĻ–ā§āϝāĻžāϝāĻŧ āĻļ⧇āώ āĻ•āϰāϤ⧇ āĻšāĻŦ⧇āĨ¤
īŋŊ(3)²=9,(33)²=1089,(333)²=110889,(3333)²=11108889,(33333)²=1111088889
īŋŊāϝāϤāϗ⧁āϞāĻŋ 3 āĻĒāĻžāĻļāĻžāĻĒāĻžāĻļāĻŋ āύāĻŋāϝāĻŧ⧇ āĻŦāĻ°ā§āĻ— āĻ•āϰāĻž āĻšāĻŦ⧇, āĻŦāĻ°ā§āĻ— āĻĢāϞ⧇ āĻāĻ•āϕ⧇āϰ āϘāϰ⧇ 9 āĻāĻŦāĻ‚ 9 āĻāϰ āĻŦāĻžāρāĻĻāĻŋāϕ⧇ āϤāĻžāϰ āĻšā§‡āϝāĻŧ⧇ (āϝāϤāϗ⧁āϞ⧋ 3 āĻĨāĻžāĻ•āĻŦ⧇) āĻāĻ•āϟāĻŋ āĻ•āĻŽ āϏāĻ‚āĻ–ā§āϝāĻ• 8, āϤāĻžāϰ āĻĒāϰ āĻŦāĻžāρāĻĻāĻŋāϕ⧇ āĻāĻ•āϟāĻŋ 0 āĻāĻŦāĻ‚ āĻŦāĻžāρāĻĻāĻŋāϕ⧇ 8 āĻāϰ āϏāĻŽāϏāĻ‚āĻ–ā§āϝāĻ• 1 āĻŦāϏāĻŦ⧇āĨ¤
īŋŊ(6)²=36,(66)²=4356,(666)²=443556,(6666)²=44435556,(66666)²=4444355556
īŋŊāϝāϤāϗ⧁āϞāĻŋ 6 āĻĒāĻžāĻļāĻžāĻĒāĻžāĻļāĻŋ āύāĻŋāϝāĻŧ⧇ āĻŦāĻ°ā§āĻ— āĻ•āϰāĻž āĻšāĻŦ⧇, āĻŦāĻ°ā§āĻ— āĻĢāϞ⧇ āĻāĻ•āϕ⧇āϰ āϘāϰ⧇ 6 āĻāĻŦāĻ‚ 6 āĻāϰ āĻŦāĻžāρāĻĻāĻŋāϕ⧇ āϤāĻžāϰ āĻšā§‡āϝāĻŧ⧇ (āϝāϤāϗ⧁āϞ⧋ 6 āĻĨāĻžāĻ•āĻŦ⧇) āĻāĻ•āϟāĻŋ āĻ•āĻŽ āϏāĻ‚āĻ–ā§āϝāĻ• 5, āϤāĻžāϰ āĻĒāϰ āĻŦāĻžāρāĻĻāĻŋāϕ⧇ āĻāĻ•āϟāĻŋ 3 āĻāĻŦāĻ‚ āĻŦāĻžāρāĻĻāĻŋāϕ⧇ 5 āĻāϰ āϏāĻŽāϏāĻ‚āĻ–ā§āϝāĻ• 4 āĻŦāϏāĻŦ⧇āĨ¤
īŋŊ(9)²=81,(99)²=9801,(999)²=998001,(9999)²=99980001,(99999)²=9999800001
īŋŊāϝāϤāϗ⧁āϞāĻŋ 9 āĻĒāĻžāĻļāĻžāĻĒāĻžāĻļāĻŋ āύāĻŋāϝāĻŧ⧇ āĻŦāĻ°ā§āĻ— āĻ•āϰāĻž āĻšāĻŦ⧇, āĻŦāĻ°ā§āĻ— āĻĢāϞ⧇ āĻāĻ•āϕ⧇āϰ āϘāϰ⧇ 1 āĻāĻŦāĻ‚ 1 āĻāϰ āĻŦāĻžāρāĻĻāĻŋāϕ⧇ āϤāĻžāϰ āĻšā§‡āϝāĻŧ⧇ (āϝāϤāϗ⧁āϞ⧋ 9 āĻĨāĻžāĻ•āĻŦ⧇) āĻāĻ•āϟāĻŋ āĻ•āĻŽ āϏāĻ‚āĻ–ā§āϝāĻ• 0, āϤāĻžāϰ āĻĒāϰ āĻŦāĻžāρāĻĻāĻŋāϕ⧇ āĻāĻ•āϟāĻŋ 8 āĻāĻŦāĻ‚ āĻŦāĻžāρāĻĻāĻŋāϕ⧇ 0 āĻāϰ āϏāĻŽāϏāĻ‚āĻ–ā§āϝāĻ• 9 āĻŦāϏāĻŦ⧇āĨ¤
_____________________________________________
īŋŊīŋŊīŋŊāϜāύāĻ•â‰ Father
1)Numerology (āϏāĻ‚āĻ–ā§āϝāĻžāϤāĻ¤ā§āĻ¤ā§āĻŦ)- Pythagoras(āĻĒāĻŋāĻĨāĻžāĻ—ā§‹āϰāĻžāϏ)
2) Geometry(āĻœā§āϝāĻžāĻŽāĻŋāϤāĻŋ)- Euclid(āχāωāĻ•ā§āϞāĻŋāĻĄ)
3) Calculus(āĻ•ā§āϝāĻžāϞāϕ⧁āϞāĻžāϏ)- Newton(āύāĻŋāωāϟāύ)
4) Matrix(āĻŽā§āϝāĻžāĻŸā§āϰāĻŋāĻ•ā§āϏ) - Arthur Cayley(āĻ…āĻ°ā§āĻĨāĻžāϰ āĻ•ā§āϝāĻžāϞ⧇)
5)Trigonometry(āĻ¤ā§āϰāĻŋāϕ⧋āĻŖāĻŽāĻŋāϤāĻŋ)Hipparchus(āĻšāĻŋāĻĒā§āĻĒāĻžāϰāϚāĻžāϏ)
6) Asthmatic(āĻĒāĻžāϟāĻŋāĻ—āĻŖāĻŋāϤ) Brahmagupta(āĻŦā§āϰāĻšā§āĻŽāϗ⧁āĻĒā§āϤ)
7) Algebra(āĻŦā§€āϜāĻ—āĻŖāĻŋāϤ)- Muhammad ibn Musa al-Khwarizmi(āĻŽāĻžā§‡āĻšāĻžāĻŽā§āĻŽāĻĻ āĻŽā§āϏāĻž āφāϞ āĻ–āĻžāϰāĻŋāϜāĻŽā§€)
īŋŊ Logarithm(āϞāĻ—āĻžāϰāĻŋāĻĻāĻŽ)- John Napier(āϜāύ āύ⧇āĻĒāĻŋāϝāĻŧāĻžāϰ)
9) Set theory(āϏ⧇āϟ āϤāĻ¤ā§āĻ¤ā§āĻŦ)- George Cantor(āϜāĻ°ā§āϜ āĻ•ā§āϝāĻžāĻ¨ā§āϟāϰ)
10) Zero(āĻļā§‚āĻ¨ā§āϝ)- Brahmagupta(āĻŦā§āϰāĻšā§āĻŽāϗ⧁āĻĒā§āϤ)
_____________________________________________
īŋŊīŋŊīŋŊāĻ…āĻ™ā§āϕ⧇āϰ āχāĻ‚āϰ⧇āϜāĻŋ āĻļāĻŦā§āĻĻ
āĻĒāĻžāϟāĻŋāĻ—āĻŖāĻŋāϤ āĻ“ āĻĒāϰāĻŋāĻŽāĻŋāϤāĻŋ
āĻ…āĻ™ā§āĻ•-Digit, āĻ…āύ⧁āĻĒāĻžāϤ-Ratio, āĻŽā§ŒāϞāĻŋāĻ• āϏāĻ‚āĻ–ā§āϝāĻžâ€”Prime number, āĻĒā§‚āĻ°ā§āĻŖāĻŦāĻ°ā§āĻ—-Perfect square,āĻ‰ā§ŽāĻĒāĻžāĻĻāĻ•-Factor,āĻ•ā§āϰāĻŽāĻŋāĻ• āϏāĻŽāĻžāύ⧁āĻĒāĻžāĻ¤ā§€â€”Continued proportion, āĻ•ā§āϰāϝāĻŧāĻŽā§‚āĻ˛ā§āϝ -Cost price, āĻ•ā§āώāϤāĻŋ-Loss, āĻ—āĻĄāĻŧ-Average, āĻ—āϤāĻŋāĻŦ⧇āĻ—-Velocity, āϗ⧁āĻŖāĻĢāϞ-Product, āĻ—,āϏāĻž,āϗ⧁-Highest Common Factor, āϘāĻžāϤ-Power, āϘāύāĻŽā§‚āĻ˛â€”Cube root, āϘāύāĻ•-Cube, āϘāύāĻĢāϞ-Volume, āĻĒā§‚āĻ°ā§āύāϏāĻ‚āĻ–ā§āϝāĻž-Integer, āϚāĻžāĻĒ-Arc, āĻšā§‹āĻ™-Cylinder, āĻœā§āϝāĻž-Chord, āĻœā§‹āĻĄāĻŧ āϏāĻ‚āĻ–ā§āϝāĻž-Even number, āĻ§ā§āϰ⧁āĻŦāĻ•-Constant, āĻĒāϰāĻŋāϏ⧀āĻŽāĻž-Perimeter, āĻŦāĻžāĻ¸ā§āϤāĻŦ-Real, āĻŦāĻ°ā§āĻ—āĻŽā§‚āϞ-Square root, āĻŦā§āϝāĻ¸ā§āϤ āĻ…āύ⧁āĻĒāĻžāĻ¤â€”Inverse ratio, āĻŦāĻŋāĻœā§‹āĻĄāĻŧāϏāĻ‚āĻ–ā§āϝāĻžâ€”Odd number, āĻŦāĻŋāĻ•ā§āϰāϝāĻŧāĻŽā§‚āĻ˛ā§āϝ -Selling price, āĻŦā§€āϜāĻ—āĻŖāĻŋāĻ¤â€”Algebra, āĻŽā§‚āϞāĻĻ Rational, āĻŽāĻ§ā§āϝ āϏāĻŽāĻžāύ⧁āĻĒāĻžāϤ⧀ -Mean proportional, āϝāĻžā§‡āĻ—āĻĢāϞ=Sum
āϞ,āϏāĻž,āϗ⧁-Lowest Common Multiple, āϞāĻŦ-Numerator, āĻļāϤāĻ•āϰāĻž-Percentage, āϏāĻŽāĻžāύ⧁āĻĒāĻžāϤ-Proportion, āϏāĻŽāĻžāύ⧁āĻĒāĻžāϤ⧀-Proportional, āϏ⧁āĻĻ-Interest, āĻšāϰ-Denominator,
_____________________________________________
īŋŊāĻœā§āϝāĻžāĻŽāĻŋāϤāĻŋ
āĻ…āϤāĻŋāĻ­ā§‚āĻœâ€”Hypotenuse, āĻ…āĻ¨ā§āϤāσāϕ⧋āĻŖ-Internal angle, āĻ…āĻ°ā§āϧāĻŦ⧃āĻ¤ā§āϤ-Semi-circle, āĻ…āĻ¨ā§āϤ āĻŦā§āϝāĻžāϏāĻžāĻ°ā§āϧ-In-radius, āφāϝāĻŧāϤāĻ•ā§āώ⧇āĻ¤ā§āϰ-Rectangle, āωāĻšā§āϚāϤāĻž-Height, āĻ•āĻ°ā§āĻŖâ€“Diagonal, āϕ⧋āĻŖ-Angle, āϕ⧇āĻ¨ā§āĻĻā§āϰ-Centre, āĻ—āĻžā§‡āϞāĻ•-Sphere, āϚāϤ⧁āĻ°ā§āϭ⧁āϜ-Quadrilateral, āĻšā§‹āĻ™-Cylinder,āĻœā§āϝāĻžāĻŽāĻŋāϤāĻŋ-Geometry,āĻĻ⧈āĻ°ā§āĻ˜ā§āϝ-Length, āĻĒāĻžā§āϚāĻ­ā§‚āϜ -Pentagon, āĻĒā§āϰāĻ¸ā§āĻĨ-Breadth
āĻĒā§‚āϰāĻ•āϕ⧋āύ-Complementary angles, āĻŦāĻžāĻšā§-Side, āĻŦ⧃āĻ¤ā§āϤ-Circle, āĻŦā§āϝāĻžāϏāĻžāĻ°ā§āϧ-Radius, āĻŦā§āϝāĻžāϏ-Diameter, āĻŦāĻšā§āĻ­ā§‚āϜ-Polygon, āĻŦāĻ°ā§āĻ—āĻ•ā§āώ⧇āĻ¤ā§āĻ°â€”Square, āĻŦāĻšāĻŋ:āĻ¸ā§āĻĨ External, āĻļāĻ™ā§āϕ⧁-Cone, āϏāĻŽāϕ⧋āĻŖ-Right angle, āϏāĻŽāĻŦāĻžāĻšā§ āĻ¤ā§āϰāĻŋāĻ­ā§‚āϜ-Equilateral triangle, āĻ…āϏāĻŽāĻŦāĻžāĻšā§ āĻ¤ā§āϰāĻŋāĻ­ā§‚āĻœâ€”Scalene triangle, āϏāĻŽāĻĻā§āĻŦāĻŋāĻŦāĻžāĻšā§ āĻ¤ā§āϰāĻŋāĻ­ā§‚āϜ-isosceles Triangle,āϏāĻŽāϕ⧋āĻŖā§€ āĻ¤ā§āϰāĻŋāϭ⧁āϜ Right angled triangle, āϏ⧂āĻ•ā§āĻˇā§āĻŽāϕ⧋āĻŖā§€-Acute angled triangle, āĻ¸ā§āĻĨā§‚āϞāϕ⧋āĻŖā§€ āĻ¤ā§āϰāĻŋāϭ⧁āϜ Obtuse angled triangle, āϏāĻŽāĻžāĻ¨ā§āϤāϰāĻžāĻ˛â€”Parallel, āϏāϰāϞāϰ⧇āĻ–āĻžâ€”Straight line, āϏāĻŽā§āĻĒā§‚āϰāĻ• āϕ⧋āĻŖâ€”Supplementary angles, āϏāĻĻ⧃āĻļāϕ⧋āĻŖā§€-Equiangular
_____________________________________________
īŋŊāϰ⧋āĻŽāĻžāύ āϏāĻ‚āĻ–ā§āϝāĻžâ‰  Roman numerals )
1:I
2: II
3: III
4: IV
5: V
6: VI
7: VII
8: VIII
9: IX
10: X
11: XI
12: XII
13: XIII
14: XIV
15: XV
16: XVI
17: XVII
18: XVIII
19: XIX
20: **
30: XXX
40: XL
50: L
60: LX
70: LXX
80: LXXX
90: XC
100: C
200: CC
300: CCC
400: CD
500: D
600: DC
700: DCC
800: DCCC
900: CM
1000:M
_____________________________________________
īŋŊīŋŊ1. āĻœā§‹āĻĄāĻŧ āϏāĻ‚āĻ–ā§āϝāĻž + āĻœā§‹āĻĄāĻŧ āϏāĻ‚āĻ–ā§āϝāĻž = āĻœā§‹āĻĄāĻŧ
āϏāĻ‚āĻ–ā§āϝāĻžāĨ¤
āϝ⧇āĻŽāύāσ 2 + 6 = 8.
īŋŊ2. āĻœā§‹āĻĄāĻŧ āϏāĻ‚āĻ–ā§āϝāĻž + āĻŦāĻŋāĻœā§‹āĻĄāĻŧ āϏāĻ‚āĻ–ā§āϝāĻž =
āĻŦāĻŋāĻœā§‹āĻĄāĻŧ āϏāĻ‚āĻ–ā§āϝāĻžāĨ¤
āϝ⧇āĻŽāύāσ 6 + 7 = 13.
īŋŊ3. āĻŦāĻŋāĻœā§‹āĻĄāĻŧ āϏāĻ‚āĻ–ā§āϝāĻž + āĻŦāĻŋāĻœā§‹āĻĄāĻŧ āϏāĻ‚āĻ–ā§āϝāĻž =
āĻœā§‹āĻĄāĻŧ āϏāĻ‚āĻ–ā§āϝāĻžāĨ¤
āϝ⧇āĻŽāύāσ 3 + 5 = 8.
īŋŊ4. āĻœā§‹āĻĄāĻŧ āϏāĻ‚āĻ–ā§āϝāĻž × āĻœā§‹āĻĄāĻŧ āϏāĻ‚āĻ–ā§āϝāĻž = āĻœā§‹āĻĄāĻŧ
āϏāĻ‚āĻ–ā§āϝāĻžāĨ¤
āϝ⧇āĻŽāύāσ 6 × 8 = 48.
īŋŊ5.āĻœā§‹āĻĄāĻŧ āϏāĻ‚āĻ–ā§āϝāĻž × āĻŦāĻŋāĻœā§‹āĻĄāĻŧ āϏāĻ‚āĻ–ā§āϝāĻž = āĻœā§‹āĻĄāĻŧ
āϏāĻ‚āĻ–ā§āϝāĻžāĨ¤
āϝ⧇āĻŽāύāσ 6 × 7 = 42
īŋŊ6.āĻŦāĻŋāĻœā§‹āĻĄāĻŧ āϏāĻ‚āĻ–ā§āϝāĻž × āĻŦāĻŋāĻœā§‹āĻĄāĻŧ āϏāĻ‚āĻ–ā§āϝāĻž =
āĻŦāĻŋāĻœā§‹āĻĄāĻŧ āϏāĻ‚āĻ–ā§āϝāĻžāĨ¤
āϝ⧇āĻŽāύāσ 3 × 9 = 27
_____________________________________________
īŋŊīŋŊāĻ•ā§āϝāĻžāϞāϕ⧁āϞ⧇āϟāϰ āĻ›āĻžāĻĄāĻŧāĻž āϝ⧇ āϕ⧋āύ āϏāĻ‚āĻ–ā§āϝāĻžāϕ⧇ āĻ­āĻžāĻ— āĻ•āϰāĻžāϰ āĻāĻ•āϟāĻŋ effective āĻŸā§‡āĻ•āύāĻŋāĻ•!
īŋŊ āĻ•ā§āϝāĻžāϞāϕ⧁āϞ⧇āϟāϰ āĻ›āĻžāĻĄāĻŧāĻž āϝ⧇ āϕ⧋āύ āϏāĻ‚āĻ–ā§āϝāĻžāϕ⧇ 5 āĻĻāĻŋāϝāĻŧ⧇ āĻ­āĻžāĻ— āĻ•āϰāĻžāϰ āĻāĻ•āϟāĻŋ effective āĻŸā§‡āĻ•āύāĻŋāĻ•
1.īŋŊ 13/5= 2.6 (āĻ•ā§āϝāĻžāϞāϕ⧁āϞ⧇āϟāϰ āĻ›āĻžāĻĄāĻŧāĻž āĻŽāĻžāĻ¤ā§āϰ ā§Š āϏ⧇āϕ⧇āĻ¨ā§āĻĄā§‡ āĻāϟāĻŋ āϏāĻŽāĻžāϧāĻžāύ āĻ•āϰāĻž āϝāĻžāϝāĻŧ)
īŋŊ★āĻŸā§‡āĻ•āύāĻŋāĻ•āσ
5 āĻĻāĻŋāϝāĻŧ⧇ āϝ⧇ āϏāĻ‚āĻ–ā§āϝāĻžāϕ⧇ āĻ­āĻžāĻ— āĻ•āϰāĻŦ⧇āύ āϤāĻžāϕ⧇ 2 āĻĻāĻŋāϝāĻŧ⧇ āϗ⧁āĻŖ āĻ•āϰ⧁āύ āϤāĻžāϰāĻĒāϰ āĻĄāĻžāύāĻĻāĻŋāĻ• āĻĨ⧇āϕ⧇ 1 āϘāϰ āφāϗ⧇ āĻĻāĻļāĻŽāĻŋāĻ• āĻŦāϏāĻŋāϝāĻŧ⧇ āĻĻāĻŋāύāĨ¤ āĻ•āĻžāϜ āĻļ⧇āώ!!! 13*2=26, āϤāĻžāϰāĻĒāϰ āĻĨ⧇āϕ⧇ 1 āϘāϰ āφāϗ⧇ āĻĻāĻļāĻŽāĻŋāĻ• āĻŦāϏāĻŋāϝāĻŧ⧇ āĻĻāĻŋāϞ⧇ 2.6 āĨ¤
2.īŋŊ 213/5=42.6 (213*2=426)
0.03/5= 0.006 (0.03*2=0.06 āϝāĻžāϰ āĻāĻ•āϘāϰ āφāϗ⧇ āĻĻāĻļāĻŽāĻŋāĻ• āĻŦāϏāĻžāϞ⧇ āĻšāϝāĻŧ 0.006) 333,333,333/5= 66,666,666.6 (āĻāχ āϗ⧁āϞāĻž āĻ•āϰāϤ⧇ āφāĻŦāĻžāϰ āĻ•ā§āϝāĻžāϞāϕ⧁āϞ⧇āϟāϰ āϞāĻžāϗ⧇ āύāĻž āĻ•āĻŋ!)
3.īŋŊ 12,121,212/5= 2,424,242.4
āĻāĻŦāĻžāϰ āύāĻŋāĻœā§‡ āχāĻšā§āϛ⧇āĻŽāϤ 5 āĻĻāĻŋāϝāĻŧ⧇ āϝ⧇ āϕ⧋āύ āϏāĻ‚āĻ–ā§āϝāĻžāϕ⧇ āĻ­āĻžāĻ— āĻ•āϰ⧇ āĻĻ⧇āϖ⧁āύ
īŋŊīŋŊ āĻ•ā§āϝāĻžāϞāϕ⧁āϞ⧇āϟāϰ āĻ›āĻžāĻĄāĻŧāĻž āϝ⧇ āϕ⧋āύ āϏāĻ‚āĻ–ā§āϝāĻžāϕ⧇ 25 āĻĻāĻŋāϝāĻŧ⧇ āĻ­āĻžāĻ— āĻ•āϰāĻžāϰ āĻāĻ•āϟāĻŋ effective āĻŸā§‡āĻ•āύāĻŋāĻ•
1.īŋŊ 13/25=0.52 (āĻ•ā§āϝāĻžāϞāϕ⧁āϞ⧇āϟāϰ āĻ›āĻžāĻĄāĻŧāĻž āĻāϟāĻŋāĻ“ āϏāĻŽāĻžāϧāĻžāύ āĻ•āϰāĻž āϝāĻžāϝāĻŧ)
īŋŊ★āĻŸā§‡āĻ•āύāĻŋāĻ•āσ
25 āĻĻāĻŋāϝāĻŧ⧇ āϝ⧇ āϏāĻ‚āĻ–ā§āϝāĻžāϕ⧇ āĻ­āĻžāĻ— āĻ•āϰāĻŦ⧇āύ āϤāĻžāϕ⧇ 4 āĻĻāĻŋāϝāĻŧ⧇ āϗ⧁āĻŖ āĻ•āϰ⧁āύ āϤāĻžāϰāĻĒāϰ āĻĄāĻžāύāĻĻāĻŋāĻ• āĻĨ⧇āϕ⧇ 2 āϘāϰ āφāϗ⧇ āĻĻāĻļāĻŽāĻŋāĻ• āĻŦāϏāĻŋāϝāĻŧ⧇ āĻĻāĻŋāύāĨ¤ 13*4=52, āϤāĻžāϰāĻĒāϰ āĻĨ⧇āϕ⧇ 2 āϘāϰ āφāϗ⧇ āĻĻāĻļāĻŽāĻŋāĻ• āĻŦāϏāĻŋāϝāĻŧ⧇ āĻĻāĻŋāϞ⧇ 0.52 āĨ¤
02.īŋŊ 210/25 = 8.40
03.īŋŊ 0.03/25 = 0.0012
04.īŋŊ 222,222/25 = 8,888.88
05īŋŊ. 13,121,312/25 = 524,852.48
īŋŊīŋŊ āĻ•ā§āϝāĻžāϞāϕ⧁āϞ⧇āϟāϰ āĻ›āĻžāĻĄāĻŧāĻž āϝ⧇ āϕ⧋āύ āϏāĻ‚āĻ–ā§āϝāĻžāϕ⧇ 125 āĻĻāĻŋāϝāĻŧ⧇ āĻ­āĻžāĻ— āĻ•āϰāĻžāϰ āĻāĻ•āϟāĻŋ effective āĻŸā§‡āĻ•āύāĻŋāĻ•
01.īŋŊ 7/125 = 0.056
īŋŊ★āĻŸā§‡āĻ•āύāĻŋāĻ•āσ
125 āĻĻāĻŋāϝāĻŧ⧇ āϝ⧇ āϏāĻ‚āĻ–ā§āϝāĻžāϕ⧇ āĻ­āĻžāĻ— āĻ•āϰāĻŦ⧇āύ āϤāĻžāϕ⧇ 8 āĻĻāĻŋāϝāĻŧ⧇ āϗ⧁āĻŖ āĻ•āϰ⧁āύ āϤāĻžāϰāĻĒāϰ āĻĄāĻžāύāĻĻāĻŋāĻ• āĻĨ⧇āϕ⧇ 3 āϘāϰ āφāϗ⧇ āĻĻāĻļāĻŽāĻŋāĻ• āĻŦāϏāĻŋāϝāĻŧ⧇ āĻĻāĻŋāύāĨ¤ āĻ•āĻžāϜ āĻļ⧇āώ! 7*8=56, āϤāĻžāϰāĻĒāϰ āĻĨ⧇āϕ⧇ 3 āϘāϰ āφāϗ⧇ āĻĻāĻļāĻŽāĻŋāĻ• āĻŦāϏāĻŋāϝāĻŧ⧇ āĻĻāĻŋāϞ⧇ 0.056 āĨ¤
02.īŋŊ 111/125 = 0.888
03.īŋŊ 600/125 = 4.800
_____________________________________________
īŋŊīŋŊīŋŊāφāϏ⧁āύ āϏāĻšāĻœā§‡ āĻ•āϰāĻŋ
āϟāĻĒāĻŋāĻ•āσ 10 āϏ⧇āϕ⧇āĻ¨ā§āĻĄā§‡ āĻŦāĻ°ā§āĻ—āĻŽā§‚āϞ āύāĻŋāĻ°ā§āĻŖāϝāĻŧāĨ¤
āĻŦāĻŋāσāĻĻā§āϰāσ āϝ⧇ āϏāĻ‚āĻ–ā§āϝāĻžāϗ⧁āϞ⧋āϰ āĻŦāĻ°ā§āĻ—āĻŽā§‚āϞ 1 āĻĨ⧇āϕ⧇ 99 āĻāϰ āĻŽāĻ§ā§āϝ⧇ āĻāχ āĻĒāĻĻā§āϧāϤāĻŋāϤ⧇ āϤāĻžāĻĻ⧇āϰ āĻŦ⧇āϰ āĻ•āϰāĻž āϝāĻžāĻŦ⧇ āϖ⧁āĻŦ āϏāĻšāĻœā§‡āχāĨ¤ āĻĒā§āϰāĻļā§āύ⧇ āĻ…āĻŦāĻļā§āϝāχ āĻĒā§‚āĻ°ā§āĻŖāĻŦāĻ°ā§āĻ— āϏāĻ‚āĻ–ā§āϝāĻž āĻĨāĻžāĻ•āĻž āϞāĻžāĻ—āĻŦ⧇āĨ¤ āĻ…āĻ°ā§āĻĨāĻžā§Ž āωāĻ¤ā§āϤāϰ āϝāĻĻāĻŋ āĻĻāĻļāĻŽāĻŋāĻ• āĻ­āĻ—ā§āύāĻžāĻ‚āĻļ āφāϏ⧇ āϤāĻŦ⧇ āĻāχ āĻĒāĻĻā§āĻŦāϤāĻŋ āĻ•āĻžāĻœā§‡ āφāϏāĻŦ⧇āύāĻžāĨ¤
āĻ…āĻŦāĻļā§āϝāχ āĻŽāύ⧋āϝ⧋āĻ— āĻĻāĻŋāϝāĻŧ⧇ āĻĒāĻĄāĻŧāϤ⧇ āĻšāĻŦ⧇ āĻāĻŦāĻ‚ āĻĒā§āĻ°ā§āϝāĻžāĻ•āϟāĻŋāϏ āĻ•āϰāϤ⧇ āĻšāĻŦ⧇āĨ¤ āύāϝāĻŧāϤ āϭ⧁āϞ⧇ āϝāĻžāĻŦ⧇āύāĨ¤
āϤāĻŦ⧇ āφāϏ⧁āύ āĻļ⧁āϰ⧁ āĻ•āϰāĻž āϝāĻžāĻ•āĨ¤ āĻļ⧁āϰ⧁āϤ⧇ 1 āĻĨ⧇āϕ⧇ 9 āĻĒāĻ°ā§āϝāĻ¨ā§āϤ āϏāĻ‚āĻ–ā§āϝāĻžāϰ āĻŦāĻ°ā§āĻ— āĻŽā§āĻ–āĻ¸ā§āĻĨ āĻ•āϰ⧇ āύāĻŋāχāĨ¤ āφāĻļāĻž āĻ•āϰāĻŋ āĻāϗ⧁āϞ⧋ āϏāĻŦāĻžāχ āϜāĻžāύ⧇āύāĨ¤ āϏ⧁āĻŦāĻŋāϧāĻžāϰ āϜāĻ¨ā§āϝ⧇ āφāĻŽāĻŋ āύāĻŋāĻšā§‡ āϞāĻŋāϖ⧇ āĻĻāĻŋāĻšā§āĻ›āĻŋ-
1 square = 1, 2 square = 4
3 square = 9, 4 square = 16
5 square = 25, 6 square = 36
7 square = 49, 8 square = 64
9 square = 81
āĻāĻ–āĻžāύ⧇ āĻĒā§āϰāĻ¤ā§āϝ⧇āĻ•āϟāĻž āĻŦāĻ°ā§āĻ— āϏāĻ‚āĻ–ā§āϝāĻžāϰ āĻĻāĻŋāϕ⧇ āϖ⧇āϝāĻŧāĻžāϞ āĻ•āϰāϞ⧇ āĻĻ⧇āĻ–āĻŦ⧇āύ, āϏāĻŦāĻžāϰ āĻļ⧇āώ⧇āϰ āĻ…āĻ‚āĻ•āϟāĻŋāϰ āĻ•ā§āώ⧇āĻ¤ā§āϰ⧇ -
★1 āφāϰ 9 āĻāϰ āĻŦāĻ°ā§āϗ⧇āϰ āĻļ⧇āώ āĻ…āĻ‚āĻ• āĻŽāĻŋāϞ āφāϛ⧇ (1, 81)
★2 āφāϰ 8 āĻāϰ āĻŦāĻ°ā§āϗ⧇āϰ āĻļ⧇āώ āĻ…āĻ‚āĻ• āĻŽāĻŋāϞ āφāϛ⧇(4, 64)
★3 āφāϰ 7 āĻāϰ āĻŦāĻ°ā§āϗ⧇āϰ āĻļ⧇āώ āĻ…āĻ‚āĻ• āĻŽāĻŋāϞ āφāϛ⧇ (9, 49);
★4 āφāϰ 6 āĻāϰ āĻŦāĻ°ā§āϗ⧇āϰ āĻļ⧇āώ āĻ…āĻ‚āĻ• āĻŽāĻŋāϞ āφāϛ⧇(16, 36);
āĻāĻŦāĻ‚ 5 āĻāĻ•āĻž frown emoticon
āĻāĻĻā§āĻĻ⧁āϰ āĻĒāĻ°ā§āϝāĻ¨ā§āϤ āĻŦ⧁āĻāϤ⧇ āϝāĻĻāĻŋ āϕ⧋āύ āϏāĻŽāĻ¸ā§āϝāĻž āĻĨāĻžāϕ⧇ āϤāĻŦ⧇ āφāĻŦāĻžāϰ āĻĒāĻĄāĻŧ⧇ āύāĻŋāύāĨ¤
īŋŊāωāĻĻāĻžāĻšāϰāĻŖ:- 576 āĻāϰ āĻŦāĻ°ā§āĻ—āĻŽā§‚āϞ āύāĻŋāĻ°ā§āĻŖāϝāĻŧ āĻ•āϰ⧁āύāĨ¤
īŋŊāĻĒā§āϰāĻĨāĻŽ āϧāĻžāĻĒāσ āϝ⧇ āϏāĻ‚āĻ–ā§āϝāĻžāϰ āĻŦāĻ°ā§āĻ—āĻŽā§‚āϞ āύāĻŋāĻ°ā§āĻŖāϝāĻŧ āĻ•āϰāϤ⧇ āĻšāĻŦ⧇ āϤāĻžāϰ āĻāĻ•āϕ⧇āϰ āϘāϰ⧇āϰ āĻ…āĻ‚āĻ•āϟāĻŋ āĻĻ⧇āĻ–āĻŦ⧇āύāĨ¤ āĻāĻ•ā§āώ⧇āĻ¤ā§āϰ⧇ āϤāĻž āĻšāĻšā§āϛ⧇ '6' āĨ¤
īŋŊ āĻĻā§āĻŦāĻŋāϤ⧀āϝāĻŧ āϧāĻžāĻĒāσ āωāĻĒāϰ⧇āϰ āϞāĻŋāĻ¸ā§āϟ āĻĨ⧇āϕ⧇ āϏ⧇ āϏāĻ‚āĻ–ā§āϝāĻžāϰ āĻŦāĻ°ā§āϗ⧇āϰ āĻļ⧇āώ āĻ…āĻ‚āĻ• 6 āϤāĻžāĻĻ⧇āϰ āύāĻŋāĻŦ⧇āύāĨ¤ āĻāĻ•ā§āώ⧇āĻ¤ā§āϰ⧇ 4 āĻāĻŦāĻ‚ 6 āĨ¤ āφāĻŦāĻžāϰ āĻŦāϞāĻŋ, āϖ⧇āϝāĻŧāĻžāϞ āĻ•āϰ⧁āύ- 4 āĻāĻŦāĻ‚ 6 āĻāϰ āĻŦāĻ°ā§āĻ— āϝāĻĨāĻžāĻ•ā§āϰāĻŽā§‡ 16 āĻāĻŦāĻ‚ 36; āϝāĻžāĻĻ⧇āϰ āĻāĻ•āϕ⧇āϰ āϘāϰ⧇āϰ āĻ…āĻ‚āĻ• āĻ•āĻŋāύāĻž '6' āĨ¤ āĻŦ⧁āĻāϤ⧇ āĻĒ⧇āϰ⧇āϛ⧇āύ? āύāĻž āĻŦ⧁āĻāϞ⧇ āφāĻŦāĻžāϰ āĻĒāĻĄāĻŧ⧇ āĻĻ⧇āϖ⧁āύāĨ¤
īŋŊ āϤ⧃āϤ⧀āϝāĻŧ āϧāĻžāĻĒāσ 4 / 6 āϞāĻŋāϖ⧇ āϰāĻžāϖ⧁āύ āĻ–āĻžāϤāĻžāϝāĻŧāĨ¤ (āφāĻŽāϰāĻž āωāĻ¤ā§āϤāϰ⧇āϰ āĻāĻ•āϕ⧇āϰ āϘāϰ⧇āϰ āĻ…āĻ‚āĻ• āĻĒ⧇āϝāĻŧ⧇ āϗ⧇āĻ›āĻŋ, āϝāĻž āĻšāĻšā§āϛ⧇ 4 āĻ…āĻĨāĻŦāĻž 6; āĻ•āĻŋāĻ¨ā§āϤ⧁ āϕ⧋āύāϟāĻž? āĻāϰ āωāĻ¤ā§āϤāϰ āĻĒāĻžāĻŦ⧇āύ āĻ…āĻˇā§āϟāĻŽ āϧāĻžāĻĒ⧇, āĻĒāĻĄāĻŧāϤ⧇ āĻĨāĻžāϕ⧁āύ ...)
īŋŊ āϚāϤ⧁āĻ°ā§āĻĨ āϧāĻžāĻĒāσ āĻĒā§āϰāĻļā§āύ⧇āϰ āĻāĻ•āĻ• āφāϰ āĻĻāĻļāϕ⧇āϰ āĻ…āĻ‚āĻ• āĻŦāĻžāĻĻ āĻĻāĻŋāϝāĻŧ⧇ āĻŦāĻžāĻ•āĻŋ āĻ…āĻ‚āϕ⧇āϰ āĻĻāĻŋāϕ⧇ āϤāĻžāĻ•āĻžāύāĨ¤ āĻāĻ•ā§āώ⧇āĻ¤ā§āϰ⧇ āĻāϟāĻŋ āĻšāĻšā§āϛ⧇ 5 āĨ¤
īŋŊāĻĒāĻžā§āϚāĻŽ āϧāĻžāĻĒāσ āωāĻĒāϰ⧇āϰ āϞāĻŋāĻ¸ā§āϟ āĻĨ⧇āϕ⧇ 5 āĻāϰ āĻ•āĻžāĻ›āĻžāĻ•āĻžāĻ›āĻŋ āϝ⧇ āĻŦāĻ°ā§āĻ— āϏāĻ‚āĻ–ā§āϝāĻžāϟāĻŋ āφāϛ⧇ āϤāĻžāϰ āĻŦāĻ°ā§āĻ—āĻŽā§‚āϞāϟāĻž āύāĻŋāύāĨ¤ āĻāĻ•ā§āώ⧇āĻ¤ā§āϰ⧇ 4, āϝāĻž āĻ•āĻŋāύāĻž 2 āĻāϰ āĻŦāĻ°ā§āĻ—āĨ¤ (āφāĻŽāϰāĻž āωāĻ¤ā§āϤāϰ⧇āϰ āĻĻāĻļāϕ⧇āϰ āϘāϰ⧇āϰ āĻ…āĻ‚āĻ• āĻĒ⧇āϝāĻŧ⧇ āϗ⧇āĻ›āĻŋ, āϝāĻž āĻšāĻšā§āϛ⧇ 2 )
īŋŊāώāĻˇā§āĻ  āϧāĻžāĻĒāσ 2 āĻāϰ āϏāĻžāĻĨ⧇ āϤāĻžāϰ āĻĒāϰ⧇āϰ āϏāĻ‚āĻ–ā§āϝāĻž āϗ⧁āύ āĻ•āϰ⧁āύāĨ¤ āĻ…āĻ°ā§āĻĨāĻžā§Ž 2*3=6
īŋŊāϏāĻĒā§āϤāĻŽ āϧāĻžāĻĒāσ āϚāϤ⧁āĻ°ā§āĻĨ āϧāĻžāĻĒ⧇ āĻĒāĻžāĻ“āϝāĻŧāĻž āϏāĻ‚āĻ–ā§āϝāĻžāϟāĻž (5) āώāĻˇā§āĻ  āϧāĻžāĻĒ⧇ āĻĒāĻžāĻ“āϝāĻŧāĻž āϏāĻ‚āĻ–ā§āϝāĻžāϰ (6) āĻšā§‡āϝāĻŧ⧇ āϛ⧋āϟ āύāĻžāĻ•āĻŋ āĻŦāĻĄāĻŧ āĻĻ⧇āϖ⧁āύāĨ¤ āϛ⧋āϟ āĻšāϞ⧇ āϤ⧃āϤ⧀āϝāĻŧ āϧāĻžāĻĒ⧇ āĻĒāĻžāĻ“āϝāĻŧāĻž āϏāĻ‚āĻ–ā§āϝāĻžāϰ āϛ⧋āϟāϟāĻŋ āύ⧇āĻŦ, āĻŦāĻĄāĻŧ āĻšāϞ⧇ āĻŦāĻĄāĻŧāϟāĻŋāĨ¤ (āĻŦ⧁āĻāϤ⧇ āĻĒ⧇āϰ⧇āϛ⧇āύ? āύāϝāĻŧāϤ āφāĻŦāĻžāϰ āĻĒāĻĄāĻŧ⧁āύ)
īŋŊāĻ…āĻˇā§āϟāĻŽ āϧāĻžāĻĒāσ āφāĻŽāĻžāĻĻ⧇āϰ āωāĻĻāĻžāĻšāϰāϪ⧇āϰ āĻ•ā§āώ⧇āĻ¤ā§āϰ⧇ 5 āĻšāĻšā§āϛ⧇ 6 āĻāϰ āϛ⧋āϟ, āϤāĻžāχ āφāĻŽāϰāĻž 4 / 6 āĻŽāĻ§ā§āϝ⧇ āϛ⧋āϟ āϏāĻ‚āĻ–ā§āϝāĻž āĻ…āĻ°ā§āĻĨāĻžā§Ž 4 āύ⧇āĻŦāĨ¤
īŋŊāύāĻŦāĻŽ āϧāĻžāĻĒāσ āĻŽāύ⧇ āφāϛ⧇, āĻĒāĻžā§āϚāĻŽ āϧāĻžāĻĒ⧇ āĻĻāĻļāϕ⧇āϰ āϘāϰ⧇āϰ āĻ…āĻ‚āĻ• āĻĒ⧇āϝāĻŧ⧇āĻ›āĻŋāϞāĻžāĻŽ 2 āĻāĻŦāĻžāϰ āĻĒ⧇āϝāĻŧ⧇āĻ›āĻŋ āĻāĻ•āϕ⧇āϰ āϘāϰ⧇āϰ āĻ…āĻ‚āĻ• 4 āĨ¤ āϤāĻžāχ āωāĻ¤ā§āϤāϰ āĻšāĻŦ⧇ 24
āĻ•āĻ āĻŋāύ āĻŽāύ⧇ āĻšāĻšā§āϛ⧇? āĻāĻ•āĻĻāĻŽāχ āύāĻž, āĻ•āϝāĻŧ⧇āĻ•āϟāĻž āĻĒā§āĻ°ā§āϝāĻžāĻ•āϟāĻŋāϏ āĻ•āϰ⧇ āĻĻ⧇āϖ⧁āύāĨ¤ āφāĻŽāĻžāϰ āĻŽāϤ⧇ āϖ⧁āĻŦ āĻŦ⧇āĻļāĻŋ āϏāĻŽāϝāĻŧ āϞāĻžāĻ—āĻžāϰ āĻ•āĻĨāĻž āύāĻžāĨ¤
īŋŊāωāĻĻāĻžāĻšāϰāĻŖ:- 4225 āĻāϰ āĻŦāĻ°ā§āĻ—āĻŽā§‚āϞ āĻŦ⧇āϰ āĻ•āϰ⧁āύāĨ¤
āĻŽāύ⧇ āφāϛ⧇ 5 āϝ⧇ āĻāĻ•āĻž āĻ›āĻŋāϞ? āϏ⧇ āĻāĻ•āĻž āĻĨāĻžāĻ•āĻžāϝāĻŧ āφāĻĒāύāĻžāϰ āĻ•āĻžāϜ āĻ•āĻŋāĻ¨ā§āϤ⧁ āĻ…āύ⧇āĻ• āϏ⧋āϜāĻž āĻšāϝāĻŧ⧇ āϗ⧇āϛ⧇āĨ¤ āĻĻ⧇āϖ⧁āύ āϕ⧇āύ⧋ āĻĒā§āϰāĻļā§āύ⧇āϰ āĻļ⧇āώ āĻ…āĻ‚āĻ• 5 āĻšāĻ“āϝāĻŧāĻžāϝāĻŧ āωāĻ¤ā§āϤāϰ⧇āϰ āĻāĻ•āϕ⧇āϰ āϘāϰ⧇āϰ āĻ…āĻ‚āĻ• āĻšāĻŦ⧇ āĻ…āĻŦāĻļā§āϝāχ 5 āĨ¤
- āĻĒā§āϰāĻļā§āύ⧇āϰ āĻāĻ•āĻ• āĻ“ āĻĻāĻļāϕ⧇āϰ āϘāϰ⧇āϰ āĻ…āĻ‚āĻ• āĻŦāĻžāĻĻ āĻĻāĻŋāϝāĻŧ⧇ āĻĻāĻŋāϞ⧇ āĻŦāĻžāĻ•āĻŋ āĻĨāĻžāϕ⧇ 42 āĨ¤
- 42 āĻāϰ āϏāĻŦāĻšā§‡āϝāĻŧ⧇ āĻ•āĻžāϛ⧇āϰ āĻĒā§‚āĻ°ā§āĻŖāĻŦāĻ°ā§āĻ— āϏāĻ‚āĻ–ā§āϝāĻž āĻšāĻšā§āϛ⧇ 36, āϝāĻžāϰ āĻŦāĻ°ā§āĻ—āĻŽā§‚āϞ āĻšāĻšā§āϛ⧇ 6 āĨ¤ āϤāĻžāχ āωāĻ¤ā§āϤāϰ āĻšāĻšā§āϛ⧇ 65
_____________________________________________
īŋŊ
īŋŊ1. āĻĒāĻžāρāϚ āĻ…āĻ™ā§āϕ⧇āϰ āĻ•ā§āώ⧁āĻĻā§āϰāϤāĻŽ āϏāĻ‚āĻ–ā§āϝāĻž āĻāĻŦāĻ‚ āϚāĻžāϰ āĻ…āĻ™ā§āϕ⧇āϰ āĻŦ⧃āĻšāĻ¤ā§āϤāĻŽ āϏāĻ‚āĻ–ā§āϝāĻžāϰ āĻ…āĻ¨ā§āϤāϰ āĻ•āϤ?
āωāσ ā§§āĨ¤(ā§§ā§Ļā§Ļā§Ļā§Ļ-⧝⧝⧝⧝)
īŋŊ2. ā§Ļ,ā§§,⧍ āĻāĻŦāĻ‚ ā§Š āĻĻā§āĻŦāĻžāϰāĻž āĻ—āĻ āĻŋāϤ āϚāĻžāϰ āĻ…āĻ™ā§āϕ⧇āϰ āĻŦ⧃āĻšāĻ¤ā§āϤāĻŽ āĻāĻŦāĻ‚ āĻ•ā§āώ⧁āĻĻā§āϰāϤāĻŽ āϏāĻ‚āĻ–ā§āϝāĻžāϰ āĻŦāĻŋāϝāĻŧā§‹āĻ—āĻĢāϞ-
āωāσ ā§¨ā§§ā§Žā§­āĨ¤(ā§Šā§¨ā§§ā§Ļ-ā§§ā§Ļā§¨ā§Š)
īŋŊ3.āϝāĻĻāĻŋ ā§§ āĻĨ⧇āϕ⧇ ā§§ā§Ļā§Ļ āĻĒāĻ°ā§āϝāĻ¨ā§āϤ āĻ—āĻŖāύāĻž āĻ•āϰāĻž āĻšāϝāĻŧ āϤāĻŦ⧇ āĻāϰ āĻŽāĻ§ā§āϝ⧇ āĻ•āϤāϟāĻŋ ā§Ģ āĻĒāĻžāĻŦā§‹āĨ¤
āωāσ ⧍ā§ĻāϟāĻŋāĨ¤
*ā§§āĻĨ⧇āϕ⧇ ā§§ā§Ļā§Ļ āĻĒāĻ°ā§āϝāĻ¨ā§āϤ ā§Ļ=ā§§ā§§āϟāĻŋ
ā§§ āĻĨ⧇āϕ⧇ ā§§ā§Ļā§Ļ āĻĒāĻ°ā§āϝāĻ¨ā§āϤ ā§§=⧍⧧āϟāĻŋ
ā§§ āĻĨ⧇āϕ⧇ ā§§ā§Ļā§Ļ āĻĒāĻ°ā§āϝāĻ¨ā§āϤ ⧍āĻĨ⧇āϕ⧇ ⧝ āĻĒāĻ°ā§āϝāĻ¨ā§āϤ āĻ…āĻ™ā§āĻ•āϗ⧁āϞ⧋ āĻĒāĻžāĻ“āϝāĻŧāĻž āϝāĻžāĻŦ⧇=⧍ā§ĻāϟāĻŋāĨ¤
īŋŊ4. ⧭⧍ āϏāĻ‚āĻ–ā§āϝāĻžāϟāĻŋāϰ āĻŽā§‹āϟ āĻ­āĻžāϜāĻ• ?
āωāσ ⧧⧍āϟāĻŋ
*⧭⧍=ā§§Ã—ā§­ā§¨=ā§¨Ã—ā§Šā§Ŧ=ā§ŠÃ—ā§¨ā§Ē=ā§ĒÃ—ā§§ā§Ž=ā§ŦÃ—ā§§ā§¨=ā§ŽÃ—ā§¯
⧭⧍ āϏāĻ‚āĻ–ā§āϝāĻžāϟāĻŋ āĻ­āĻžāϜāĻ•=ā§§,⧍,ā§Š,ā§Ē,ā§Ŧ,ā§Ž,⧝,⧧⧍,ā§§ā§Ž,⧍ā§Ē,ā§Šā§Ŧ,⧭⧍āĨ¤
īŋŊ5. ā§§ āĻĨ⧇āϕ⧇ ā§§ā§Ļā§Ļ āĻĒāĻ°ā§āϝāĻ¨ā§āϤ āĻŽā§ŒāϞāĻŋāĻ• āϏāĻ‚āĻ–ā§āϝāĻž āĻ•āϤāϟāĻŋ?
āωāσ ⧍ā§ĢāϟāĻŋāĨ¤
īŋŊ6. (ā§Ļ.ā§Ļā§§)^⧍ āĻāϰ āĻŽāĻžāύ āϕ⧋āύ āĻ­āĻ—ā§āύāĻžāĻ‚āĻļāϟāĻŋāϰ āϏāĻŽāĻžāύ
āωāσ ā§§/ā§§ā§Ļā§Ļā§Ļā§Ļ
*(ā§Ļ.ā§Ļā§§)^⧍=ā§Ļ.ā§Ļā§§Ã—ā§Ļ.ā§Ļā§§
=ā§Ļ.ā§Ļā§Ļā§Ļā§§
=ā§§/ā§§ā§Ļā§Ļā§Ļā§Ļ
īŋŊ7. āĻĻ⧁āχāϟāĻŋ āϏāĻ‚āĻ–ā§āϝāĻžāϰ āϏāĻŽāĻˇā§āϟāĻŋ ā§­ā§Ļ āĻāĻŦāĻ‚ āĻ…āĻ¨ā§āϤāϰāĻĢāϞ ā§§ā§Ļ āĻšāϞ⧇ āĻŦāĻĄāĻŧ āϏāĻ‚āĻ–ā§āϝāĻžāϟāĻŋ
āωāσ ā§Ēā§Ļ
*āĻŦāĻĄāĻŧ āϏāĻ‚āĻ–ā§āϝāĻžāϟāĻŋ=ā§­ā§Ļ+ā§§ā§Ļ
=ā§Žā§ĻÃˇā§¨
=ā§Ēā§Ļ
īŋŊ8. āĻāĻ•āϟāĻŋ āϏāĻ‚āĻ–ā§āϝāĻž ā§­ā§Ē⧍ āĻĨ⧇āϕ⧇ āϝāϤ āĻŦāĻĄāĻŧ ā§Žā§Šā§Ļ āĻĨ⧇āϕ⧇ āϤāϤ āϛ⧋āϟāĨ¤ āϏāĻ‚āĻ–ā§āϝāĻžāϟāĻŋ āĻ•āϤ?
āωāσ ā§­ā§Žā§Ŧ
*āύāĻŋāĻ°ā§āĻŖāϝāĻŧ⧇ āϏāĻ‚āĻ–ā§āϝāĻž=ā§­ā§Ē⧍+ā§Žā§Šā§Ļ
=ā§§ā§Ģā§­ā§¨Ãˇā§¨
=ā§­ā§Žā§Ŧ
īŋŊ9.āĻĻ⧁āχāϟāĻŋ āϏāĻ‚āĻ–ā§āϝāĻžāϰ āϗ⧁āĻŖāĻĢāϞ ā§§ā§Ģā§Šā§Ŧ āϏāĻ‚āĻ–ā§āϝāĻž āĻĻ⧁āϟāĻŋāϰ āϞ āϏāĻž āϗ⧁ ⧝ā§Ŧ āĻšāϞ⧇ āĻ— āϏāĻž āϗ⧁ āĻ•āϤ?
āωāσ ā§§ā§Ŧ
* āϞ āϏāĻž āϗ⧁ × āĻ— āϏāĻž āϗ⧁ = āϗ⧁āύāĻĢāϞ
⧝ā§Ŧ×āĻ— āϏāĻž āϗ⧁ = ā§§ā§Ģā§Šā§Ŧ
āĻ— āϏāĻž āϗ⧁ = ā§§ā§Ģā§Šā§ŦÃˇā§¯ā§Ŧ
=ā§§ā§Ŧ
īŋŊ10. āĻ…āύ⧁āĻĒāĻžāϤ āĻ•āĻŋ?
āωāσ āĻāĻ•āϟāĻŋ āĻ­āĻ—ā§āύāĻžāĻ‚āĻļ
īŋŊ11. ⧍ā§Ē āϕ⧇ ā§­:ā§Ŧ āĻ…āύ⧁āĻĒāĻžāϤ⧇ āĻŦ⧃āĻĻā§āϧāĻŋ āĻ•āϰāϞ⧇ āύāϤ⧁āύ āϏāĻ‚āĻ–ā§āϝāĻž āĻšāĻŦ⧇?
āωāσ ā§¨ā§Ž
*āύāϤ⧁āύ āϏāĻ‚āĻ–ā§āϝāĻžÃˇā§¨ā§Ē=ā§­/ā§Ŧ
āύāϤ⧁āύ āϏāĻ‚āĻ–ā§āϝāĻž =ā§­Ã—ā§¨ā§ĒÃˇā§Ŧ
=ā§­Ã—ā§Ē
=ā§¨ā§Ž
īŋŊ12. ā§§ āĻĨ⧇āϕ⧇ ā§Ē⧝ āĻĒāĻ°ā§āϝāĻ¨ā§āϤ āĻ•ā§āϰāĻŽāĻŋāĻ• āϏāĻ‚āĻ–ā§āϝāĻž āϗ⧁āϞ⧋āϰ āĻ—āĻĄāĻŧ āĻ•āϤ?
āωāσ ⧍ā§Ģ
*āύāĻŋāĻ°ā§āĻŖāϝāĻŧ⧇ āĻ—āĻĄāĻŧ=
āĻļ⧇āώāĻĒāĻĻ +āĻĒā§āϰāĻĨāĻŽ āĻĒāĻĻÃˇā§¨
ā§Ē⧝+ā§§=ā§Ģā§ĻÃˇā§¨=⧍ā§Ģ
īŋŊ13.ā§§ āĻĨ⧇āϕ⧇ ⧝⧝ āĻĒāĻ°ā§āϝāĻ¨ā§āϤ āϏāĻ‚āĻ–ā§āϝāĻžāϗ⧁āϞ⧋āϰ āϏāĻŽāĻˇā§āϟāĻŋ āĻ•āϤ?
āωāσ ā§Ē⧝ā§Ģā§Ļ
*āϏāĻŽāĻˇā§āϟāĻŋ=n(n+ā§§)Ãˇā§¨
=⧝⧝(⧝⧝+ā§§)Ãˇā§¨
=ā§¯ā§¯Ã—ā§§ā§Ļā§ĻÃˇā§¨
=ā§¯ā§¯Ã—ā§Ģā§Ļ
=ā§Ē⧝ā§Ģā§Ļ
-----------------------------------------------------
īŋŊ1 āĻĢ⧁āϟ = 12 āχāĻžā§āϚāĻŋ
1 āĻ—āϜ = 3 āĻĢ⧁āϟ
1 āĻŽāĻžāχāϞ = ā§§ā§­ā§Ŧā§Ļ āĻ—āϜ
1 āĻŽāĻžāχāϞ ≈ 1.61 āĻ•āĻŋāϞ⧋āĻŽāĻŋāϟāĻžāϰ
1 āχāĻžā§āϚāĻŋ = 2.54 āϏ⧇āĻ¨ā§āϟāĻŋāĻŽāĻŋāϟāĻžāϰ
1 āĻĢ⧁āϟ = 0.3048 āĻŽāĻŋāϟāĻžāϰ
1 āĻŽāĻŋāϟāĻžāϰ = 1,000 āĻŽāĻŋāϞāĻŋāĻŽāĻŋāϟāĻžāϰ
1 āĻŽāĻŋāϟāĻžāϰ = 100 āϏ⧇āĻ¨ā§āϟāĻŋāĻŽāĻŋāϟāĻžāϰ
1 āĻ•āĻŋāϞ⧋āĻŽāĻŋāϟāĻžāϰ = 1,000 āĻŽāĻŋāϟāĻžāϰ
1 āĻ•āĻŋāϞ⧋āĻŽāĻŋāϟāĻžāϰ ≈ 0.62 āĻŽāĻžāχāϞ
īŋŊāĻ•ā§āώ⧇āĻ¤ā§āϰāσ
1 āĻŦāĻ°ā§āĻ— āĻĢ⧁āϟ = 144 āĻŦāĻ°ā§āĻ— āχāĻžā§āϚāĻŋ
1 āĻŦāĻ°ā§āĻ— āĻ—āϜ = 9 āĻŦāĻ°ā§āĻ— āĻĢ⧁āϟ
1 āĻāĻ•āϰ = 43560 āĻŦāĻ°ā§āĻ— āĻĢ⧁āϟ
īŋŊ āφāϝāĻŧāϤāύāσ
1 āϞāĻŋāϟāĻžāϰ ≈ 0.264 āĻ—ā§āϝāĻžāϞāύ
1 āϘāύ āĻĢ⧁āϟ = 1.728 āϘāύ āχāĻžā§āϚāĻŋ
1 āϘāύ āĻ—āϜ = 27 āϘāύ āĻĢ⧁āϟ
īŋŊ āĻ“āϜāύāσ
1 āφāωāĻ¨ā§āϏ ≈ 28.350 āĻ—ā§āϰāĻžāĻŽ
1 cvDÛ= 16 āφāωāĻ¨ā§āϏ
1 cvDÛ ≈ 453.592 āĻ—ā§āϰāĻžāĻŽ
1 āĻāĻ• āĻ—ā§āϰāĻžāĻŽā§‡āϰ āĻāĻ°ā§āĻ•āϏāĻšāĻ¸ā§āϰāĻžāĻ‚āĻļ = 0.001āĻ—ā§āϰāĻžāĻŽ
1 āĻ•āĻŋāϞ⧋āĻ—ā§āϰāĻžāĻŽ = 1,000 āĻ—ā§āϰāĻžāĻŽ
1 āĻ•āĻŋāϞ⧋āĻ—ā§āϰāĻžāĻŽ ≈ 2.2 āĻĒāĻžāωāĻ¨ā§āĻĄ
1 āϟāύ = 2,200 āĻĒāĻžāωāĻ¨ā§āĻĄ
īŋŊ āĻŽāĻŋāϞāĻŋāϝāĻŧāύ, āĻŦāĻŋāϞāĻŋāϝāĻŧāύ, āĻŸā§āϰāĻŋāϞāĻŋāϝāĻŧāύ āĻšāĻŋāϏāĻžāĻŦ
ā§§ āĻŽāĻŋāϞāĻŋāϝāĻŧāύ=ā§§ā§Ļ āϞāĻ•ā§āώ
ā§§ā§Ļ āĻŽāĻŋāϞāĻŋāϝāĻŧāύ=ā§§ āϕ⧋āϟāĻŋ
ā§§ā§Ļā§Ļ āĻŽāĻŋāϞāĻŋāϝāĻŧāύ=ā§§ā§Ļ āϕ⧋āϟāĻŋ
ā§§,ā§Ļā§Ļā§Ļ āĻŽāĻŋāϞāĻŋāϝāĻŧāύ=ā§§ā§Ļā§Ļ āϕ⧋āϟāĻŋ
āφāĻŦāĻžāϰ,
ā§§,ā§Ļā§Ļā§Ļ āĻŽāĻŋāϞāĻŋāϝāĻŧāύ= ā§§ āĻŦāĻŋāϞāĻŋāϝāĻŧāύ
ā§§ āĻŦāĻŋāϞāĻŋāϝāĻŧāύ=ā§§ā§Ļā§Ļ āϕ⧋āϟāĻŋ
ā§§ā§Ļ āĻŦāĻŋāϞāĻŋāϝāĻŧāύ=ā§§,ā§Ļā§Ļā§Ļ āϕ⧋āϟāĻŋ
ā§§ā§Ļā§Ļ āĻŦāĻŋāϞāĻŋāϝāĻŧāύ=ā§§ā§Ļ,ā§Ļā§Ļā§Ļ āϕ⧋āϟāĻŋ
ā§§,ā§Ļā§Ļā§Ļ āĻŦāĻŋāϞāĻŋāϝāĻŧāύ=ā§§ āϞāĻ•ā§āώ āϕ⧋āϟāĻŋ
āφāĻŦāĻžāϰ,
ā§§,ā§Ļā§Ļā§Ļ āĻŦāĻŋāϞāĻŋāϝāĻŧāύ=ā§§ āĻŸā§āϰāĻŋāϞāĻŋāϝāĻŧāύ
ā§§ āĻŸā§āϰāĻŋāϞāĻŋāϝāĻŧāύ=ā§§ āϞāĻ•ā§āώ āϕ⧋āϟāĻŋ
ā§§ā§Ļ āĻŸā§āϰāĻŋāϞāĻŋāϝāĻŧāύ=ā§§ā§Ļ āϞāĻ•ā§āώ āϕ⧋āϟāĻŋ
ā§§ā§Ļā§Ļ āĻŸā§āϰāĻŋāϞāĻŋāϝāĻŧāύ=ā§§ā§Ļā§Ļ āϞāĻ•ā§āώ āϕ⧋āϟāĻŋ
ā§§,ā§Ļā§Ļā§Ļ āĻŸā§āϰāĻŋāϞāĻŋāϝāĻŧāύ=ā§§,ā§Ļā§Ļā§Ļ āϞāĻ•ā§āώ āϕ⧋āϟāĻŋāĨ¤
-----------------------------
ā§§ āϰāĻŋāĻŽ = ⧍ā§Ļ āĻĻāĻŋāĻ¸ā§āϤāĻž = ā§Ģā§Ļā§Ļ āϤāĻž
ā§§ āĻ­āϰāĻŋ = ā§§ā§Ŧ āφāύāĻž ;
ā§§ āφāύāĻž = ā§Ŧ āϰāϤāĻŋ
ā§§ āĻ—āϜ = ā§Š āĻĢ⧁āϟ = ⧍ āĻšāĻžāϤ
ā§§ āϕ⧇āϜāĻŋ = ā§§ā§Ļā§Ļā§Ļ āĻ—ā§āϰāĻžāĻŽ
ā§§ āϕ⧁āχāĻ¨ā§āϟāĻžāϞ = ā§§ā§Ļā§Ļ āϕ⧇āϜāĻŋ
ā§§ āĻŽā§‡āĻŸā§āϰāĻŋāĻ• āϟāύ = ā§§ā§Ļ āϕ⧁āχāĻ¨ā§āϟāĻžāϞ = ā§§ā§Ļā§Ļā§Ļ āϕ⧇āϜāĻŋ
ā§§ āϞāĻŋāϟāĻžāϰ = ā§§ā§Ļā§Ļā§Ļ āϏāĻŋāϏāĻŋ
ā§§ āĻŽāĻŖ = ā§Ēā§Ļ āϏ⧇āϰ
ā§§ āĻŦāĻŋāϘāĻž = ⧍ā§Ļ āĻ•āĻžāĻ āĻž( ā§Šā§Š āĻļāϤāĻžāĻ‚āĻļ) ;
ā§§ āĻ•āĻžāĻ āĻž = ⧭⧍ā§Ļ āĻŦāĻ°ā§āĻ—āĻĢ⧁āϟ (ā§Žā§Ļ āĻŦāĻ°ā§āĻ— āĻ—āϜ)
1 āĻŽāĻŋāϞāĻŋāϝāĻŧāύ = 10 āϞāĻ•ā§āώ
1 āĻŽāĻžāχāϞ = 1.61 āĻ•āĻŋ.āĻŽāĻŋ ;
1 āĻ•āĻŋ.āĻŽāĻŋ. = 0..62
1 āχāĻžā§āϚāĻŋ = 2.54 āϏ⧇.āĻŽāĻŋ ;
1 āĻŽāĻŋāϟāĻžāϰ = 39.37 āχāĻžā§āϚāĻŋ
1 āϕ⧇.āϜāĻŋ = 2.20 āĻĒāĻžāωāĻ¨ā§āĻĄ ;
1 āϏ⧇āϰ = 0.93 āĻ•āĻŋāϞ⧋āĻ—ā§āϰāĻžāĻŽ
1 āĻŽā§‡. āϟāύ = 1000 āĻ•āĻŋāϞ⧋āĻ—ā§āϰāĻžāĻŽ ;
1 āĻĒāĻžāωāĻ¨ā§āĻĄ = 16 āφāωāĻ¨ā§āϏ
1 āĻ—āϜ= 3 āĻĢ⧁āϟ ;
1 āĻāĻ•āϰ = 100 āĻļāϤāĻ•
1 āĻŦāĻ°ā§āĻ— āĻ•āĻŋ.āĻŽāĻŋ.= 247 āĻāĻ•āϰ
āĻĒā§āϰāĻļā§āύāσ ā§§ āĻ•āĻŋāĻŽāĻŋ āϏāĻŽāĻžāύ āĻ•āϤ āĻŽāĻžāχāϞ ?
āωāĻ¤ā§āϤāϰāσ ā§Ļ.ā§Ŧ⧍ āĻŽāĻžāχāϞāĨ¤
āĻĒā§āϰāĻļā§āύāσ ā§§ āύ⧇āϟāĻŋāĻ•ā§āϝāĻžāϞ āĻŽāĻžāχāϞ⧇ āĻ•āϤ āĻŽāĻŋāϟāĻžāϰ ?
āωāĻ¤ā§āϤāϰāσ ā§§ā§Žā§Ģā§Š.ā§¨ā§Ž āĻŽāĻŋāϟāĻžāϰāĨ¤
āĻĒā§āϰāĻļā§āύāσ āϏāĻŽā§āĻĻā§āϰ⧇āϰ āϜāϞ⧇āϰ āĻ—āĻ­ā§€āϰāϤāĻž āĻŽāĻžāĻĒāĻžāϰ
āĻāĻ•āĻ• ?
āωāĻ¤ā§āϤāϰāσ āĻĢā§āϝāĻžāĻĻāĻŽāĨ¤
āĻĒā§āϰāĻļā§āύāσ ā§§.ā§Ģ āχāĻžā§āϚāĻŋ ā§§ āĻĢ⧁āĻŸā§‡āϰ āĻ•āϤ āĻ…āĻ‚āĻļ?
āωāĻ¤ā§āϤāϰāσ ā§§/ā§Ž āĻ…āĻ‚āĻļāĨ¤
ā§§āĻŽāĻžāχāϞ =ā§§ā§­ā§Ŧā§Ļ āĻ—āϜāĨ¤]
āĻĒā§āϰāĻļā§āύāσ āĻāĻ• āĻŦāĻ°ā§āĻ— āĻ•āĻŋāϞ⧋āĻŽāĻŋāϟāĻžāϰ āĻ•āϤ āĻāĻ•āϰ?
āωāĻ¤ā§āϤāϰāσ ⧍ā§Ēā§­ āĻāĻ•āϰāĨ¤
āĻĒā§āϰāĻļā§āύāσ āĻāĻ•āϟāĻŋ āϜāĻŽāĻŋāϰ āĻĒāϰāĻŋāĻŽāĻžāύ ā§Ģ āĻ•āĻžāĻ āĻž āĻšāϞ⧇,
āϤāĻž āĻ•āϤ āĻŦāĻ°ā§āĻ—āĻĢ⧁āϟ āĻšāĻŦ⧇?
āωāĻ¤ā§āϤāϰāσ ā§Šā§Ŧā§Ļā§Ļ āĻŦāĻ°ā§āĻ—āĻĢ⧁āϟāĨ¤
āĻĒā§āϰāĻļā§āύāσ āĻāĻ• āĻŦāĻ°ā§āĻ— āχāĻžā§āϚāĻŋāϤ⧇ āĻ•āϤ āĻŦāĻ°ā§āĻ—
āϏ⧇āĻ¨ā§āϟāĻŋāĻŽāĻŋāϟāĻžāϰ?
āωāĻ¤ā§āϤāϰāσ ā§Ŧ.ā§Ēā§Ģ āϏ⧇āĻ¨ā§āϟāĻŋāĻŽāĻŋāϟāĻžāϰāĨ¤
āĻĒā§āϰāĻļā§āύāσ ā§§ āϘāύ āĻŽāĻŋāϟāĻžāϰ = āĻ•āϤ āϞāĻŋāϟāĻžāϰ?
āωāĻ¤ā§āϤāϰāσ ā§§ā§Ļā§Ļā§Ļ āϞāĻŋāϟāĻžāϰāĨ¤
āĻĒā§āϰāĻļā§āύāσ āĻāĻ• āĻ—ā§āϝāĻžāϞāύ⧇ āĻ•āϝāĻŧ āϞāĻŋāϟāĻžāϰ?
āωāĻ¤ā§āϤāϰāσ ā§Ē.ā§Ģā§Ģ āϞāĻŋāϟāĻžāϰāĨ¤
āĻĒā§āϰāĻļā§āύāσ ā§§ āϏ⧇āϰ āϏāĻŽāĻžāύ āĻ•āϤ āϕ⧇āϜāĻŋ?
āωāĻ¤ā§āϤāϰāσ ā§Ļ.ā§¯ā§Š āϕ⧇āϜāĻŋāĨ¤
āĻĒā§āϰāĻļā§āύāσ ā§§ āĻŽāϪ⧇ āĻ•āϤ āϕ⧇āϜāĻŋ?
āωāĻ¤ā§āϤāϰāσ ā§Šā§­.ā§Šā§¨ āϕ⧇āϜāĻŋāĨ¤
āĻĒā§āϰāĻļā§āύāσ ā§§ āϟāύ⧇ āĻ•āϤ āϕ⧇āϜāĻŋ?
āωāĻ¤ā§āϤāϰāσ ā§§ā§Ļā§Ļā§Ļ āϕ⧇āϜāĻŋāĨ¤
āĻĒā§āϰāĻļā§āύāσ ā§§ āϕ⧇āϜāĻŋāϤ⧇ āĻ•āϤ āĻĒāĻžāωāĻ¨ā§āĻĄ??
āωāĻ¤ā§āϤāϰāσ ⧍.⧍ā§Ļā§Ē āĻĒāĻžāωāĻ¨ā§āĻĄāĨ¤
āĻĒā§āϰāĻļā§āύāσ ā§§ āϕ⧁āχāĻ¨ā§āϟāĻžāϞ⧇ āĻ•āϤ āϕ⧇āϜāĻŋ?
āωāĻ¤ā§āϤāϰāσ ā§§ā§Ļā§Ļāϕ⧇āϜāĻŋāĨ¤
--------------------------------
īŋŊBritish & U.S British U.S
1 gallons = 4.5434 litres = 4.404
litres
2 gallons = 1 peck = 9.8070 litres
= 8.810 litres
-----------------------------------------
īŋŊāĻ•ā§āϝāĻžāϰ⧇āϟ āĻ•āĻŋ?.
āωāĻ¤ā§āϤāϰāσ āĻŽā§‚āĻ˛ā§āϝāĻŦāĻžāύ āĻĒāĻžāĻĨāϰ āĻ“ āϧāĻžāϤ⧁āϏāĻžāĻŽāĻ—ā§āϰ⧀
āĻĒāϰāĻŋāĻŽāĻžāĻĒ⧇āϰ āĻāĻ•āĻ• āĻ•ā§āϝāĻžāϰ⧇āϟ āĨ¤
1 āĻ•ā§āϝāĻžāϰ⧇āϟ =0 .2 āĻ—ā§āϰāĻžāĻŽ
īŋŊāĻŦ⧇āϞ āĻ•āĻŋ?
āωāĻ¤ā§āϤāϰāσ āĻĒāĻžāϟ āĻŦāĻž āϤ⧁āϞāĻž āĻĒāϰāĻŋāĻŽāĻžāĻĒ⧇āϰ āϏāĻŽāϝāĻŧ ‘āĻŦ⧇āĻ˛â€™
āĻāĻ•āĻ• āĻšāĻŋāϏāĻžāĻŦ⧇ āĻŦā§āϝāĻŦāĻšā§ƒāϤ āĻšāϝāĻŧ āĨ¤
1 āĻŦ⧇āϞ = 3.5 āĻŽāĻŖ (āĻĒā§āϰāĻžāϝāĻŧ) āĨ¤

Event Venue

Bishramganj, Agartala, Tripura, India

Icon
Concerts, fests, parties, meetups - all the happenings, one place.

Ask AI if this event suits you:

More Events in Agartala

carnival #puja hopping
Wed, 18 Feb at 01:30 pm carnival #puja hopping

Krishna Nagar

Babu Bisa
Sun, 01 Mar at 01:30 pm Babu Bisa

Krishna Nagar

my first reel
Tue, 03 Mar at 12:00 am my first reel

belonia, Belonia, Tripura, India

fun
Sun, 08 Mar at 01:30 pm fun

Champamura Village

Agartala is Happening!

Never miss your favorite happenings again!

Explore Agartala Events